因为S是T的子串,那么我们可以构建数XSY,那么这个数就是num = (X*10^strlen(S) + S )*10*strlen(Y) + Y,因为num%a == 0 ,所以根据同余模定理,
num%a == ((x%a) * (( 10^strlen(S) + S%a) *10*strlen(Y) )%a + Y%a,
设 mod = ( num - Y%a ) %a;
所以 Y%a = ( a - mod ) %a;
所以只需枚举Y的长度和x%a,此问题得解
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
using namespace std;
typedef long long LL;
int main ( )
{
LL a , s, b;
char str[10];
while ( ~scanf ( "%lld" , &a ) )
{
scanf ( "%s" , &str );
LL base = 1;
int len = strlen ( str );
if ( len == 1 && str[0] =='0' )
{
puts ( "0" );
continue;
}
for ( int i = 0 ; i < len ; i++ )
base *= 10L;
sscanf ( str , "%I64d" , &s );
b = -1;
for ( LL i = 1 ; i <= 10000 ; i *= 10 )
for ( LL j = (str[0]=='0'?1:0);j < a ; j++ )
{
LL temp = ( j*base + s ) * i;
LL y = ( a - temp%a ) %a;
if ( y < i )
{
temp += y;
if ( b == -1 || temp < b )
b = temp;
}
}
printf ( "%I64d\n" , b/a);
}
}