一、同余定理的定义:

    两个整数a,b,如果他们同时对一个自然数m求余所得的余数相同,则称a,b对于模m同余。记作a≡b(mod m)。读为:a同余于b模m。在这里“≡”是同余符号。

二、同余定理的一些性质:

  •     对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。(加减乘同理)

        (a+b)%c==(a%c+b%c)%c

  •  对于同一个除数,如果有两个整数同余,那么它们的差一定能被这个除数整除。
  •     对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。
  • 1、“数的和差积与余的和差积同余”
     
    2、“数与数同余,则方与方同余”
     
    3、“同余相减得整除”