LeetCode

到达目的地的方案数

题目链接:1976. 到达目的地的方案数 - 力扣(LeetCode)

题目描述

你在一个城市里,城市由 n 个路口组成,路口编号为 0n - 1 ,某些路口之间有 双向 道路。输入保证你可以从任意路口出发到达其他任意路口,且任意两个路口之间最多有一条路。

给你一个整数 n 和二维整数数组 roads ,其中 roads[i] = [ui, vi, timei] 表示在路口 uivi 之间有一条需要花费 timei 时间才能通过的道路。你想知道花费 最少时间 从路口 0 出发到达路口 n - 1 的方案数。

请返回花费 最少时间 到达目的地的 路径数目 。由于答案可能很大,将结果对 109 + 7 取余 后返回。

示例 1:

img

输入:n = 7, roads = [[0,6,7],[0,1,2],[1,2,3],[1,3,3],[6,3,3],[3,5,1],[6,5,1],[2,5,1],[0,4,5],[4,6,2]]
输出:4
解释:从路口 0 出发到路口 6 花费的最少时间是 7 分钟。
四条花费 7 分钟的路径分别为:
- 0 ➝ 6
- 0 ➝ 4 ➝ 6
- 0 ➝ 1 ➝ 2 ➝ 5 ➝ 6
- 0 ➝ 1 ➝ 3 ➝ 5 ➝ 6

示例 2:

输入:n = 2, roads = [[1,0,10]]
输出:1
解释:只有一条从路口 0 到路口 1 的路,花费 10 分钟。

提示:

  • 1 <= n <= 200
  • n - 1 <= roads.length <= n * (n - 1) / 2
  • roads[i].length == 3
  • 0 <= ui, vi <= n - 1
  • 1 <= timei <= 109
  • ui != vi
  • 任意两个路口之间至多有一条路。
  • 从任意路口出发,你能够到达其他任意路口。

思路

Dijkstra 算法

代码

C++
class Solution {
public:
    int countPaths(int n, vector<vector<int>>& roads) {
        vector<vector<long long>> g(n,vector<long long>(n,LLONG_MAX / 2));
        for(auto &r : roads){
            int x = r[0], y = r[1], d = r[2];
            g[x][y] = d;
            g[y][x] = d;
        }

        vector<long long> dis(n, LLONG_MAX / 2);
        dis[0] = 0;
        vector<int> f(n),done(n);
        f[0] = 1;
        while(true){
            int x = -1;
            for(int i = 0; i < n; i++){
                if(!done[i] && (x < 0 || dis[i] < dis[x])){
                    x = i;
                }
            }
            if(x == n - 1){
                return f[n - 1];
            }
            done[x] = true; // 最短路长度已确定(无法变得更小)
            for(int y = 0; y < n; y++){
                long long new_dis = dis[x] + g[x][y];
                if(new_dis < dis[y]){
                    dis[y] = new_dis;
                    f[y] = f[x];
                } else if(new_dis == dis[y]){
                    f[y] = (f[y] + f[x]) % 1'000'000'007;
                }
            }
        }
    }
};
Java
class Solution {
    public int countPaths(int n, int[][] roads) {
        long[][] g = new long[n][n]; // 邻接矩阵
        for (long[] row : g) {
            Arrays.fill(row, Long.MAX_VALUE / 2); // 防止溢出
        }
        for (int[] r : roads) {
            int x = r[0];
            int y = r[1];
            int d = r[2];
            g[x][y] = d;
            g[y][x] = d;
        }

        long[] dis = new long[n];
        Arrays.fill(dis, 1, n, Long.MAX_VALUE / 2);
        int[] f = new int[n];
        f[0] = 1;
        boolean[] done = new boolean[n];
        while (true) {
            int x = -1;
            for (int i = 0; i < n; i++) {
                if (!done[i] && (x < 0 || dis[i] < dis[x])) {
                    x = i;
                }
            }
            if (x == n - 1) {
                // 不可能找到比 dis[n-1] 更短,或者一样短的最短路了(注意本题边权都是正数)
                return f[n - 1];
            }
            done[x] = true; // 最短路长度已确定(无法变得更小)
            for (int y = 0; y < n; y++) { // 尝试更新 x 的邻居的最短路
                long newDis = dis[x] + g[x][y];
                if (newDis < dis[y]) {
                    // 就目前来说,最短路必须经过 x
                    dis[y] = newDis;
                    f[y] = f[x];
                } else if (newDis == dis[y]) {
                    // 和之前求的最短路一样长
                    f[y] = (f[y] + f[x]) % 1_000_000_007;
                }
            }
        }
    }
}