官方网站:https://ece.uwaterloo.ca/~z70wang/research/ssim/

1、SSIM

structural similarity index

  经常用到图像处理中,特别在图像去噪处理中在图像相似度评价上全面超越SNR(signal to noise ratio)和PSNR(peak signal to noise ratio)。

  作为结构相似性理论的实现,结构相似度指数从图像组成的角度将结构信息定义为独立于亮度、对比度的,反映场景中物体结构的属性,并将失真建模为亮度、对比度和结构三个不同因素的组合。用均值作为亮度的估计,标准差作为对比度的估计,协方差作为结构相似程度的度量。


峰值信噪比(PSNR)

峰值信噪比(PSNR)是最普遍,最广泛使用的评鉴画质的客观量测法,PSNR的单位为dB。所以PSNR值越大,就代表失真越少
 PSNR=10*log10((2^n-1)^2/MSE),MSE是原图像与处理图像之间均方误差。


源代码:



function s=csnr(A,B,row,col)%%峰值信噪比(PSNR)是最普遍,最广泛使用的评鉴画质的客观量测法,PSNR的单位为dB。所以PSNR值越大,就代表失真越少
                            %%PSNR=10*log10((2^n-1)^2/MSE),MSE是原图像与处理图像之间均方误差。
                            
                            %%row和col表示图像的边界像素数,A表示元图像,B表示处理后图像,返回值是性噪比
                            
[n,m,ch]=size(A);

if ch==1                    %%二维灰度图像
   e=A-B;
   e=e(row+1:n-row,col+1:m-col);
   me=mean(mean(e.^2));     %%每个元素平方后,先求每列的均值,再求向量的均值,结果相当于求每个元素平方后的均值,即均方误差
   s=10*log10(255^2/me);
else                        %%表示二维彩色图像,具有三个通道,相当于有三层二维灰度图像,计算PSNR时每层分别进行计算
   e=A-B;
   e=e(row+1:n-row,col+1:m-col,:);
   e1=e(:,:,1);e2=e(:,:,2);e3=e(:,:,3);
   me1=mean(mean(e1.^2));  %R
   me2=mean(mean(e2.^2));  %G
   me3=mean(mean(e3.^2));  %B
   s(1)=10*log10(255^2/me1);
   s(2)=10*log10(255^2/me2);
   s(3)=10*log10(255^2/me3);
end


return;






function ssim  =  cal_ssim( im1, im2, b_row, b_col )

[h w]  =  size( im1 );

ssim   =  ssim_index( im1( b_row+1:h-b_row, b_col+1:w-b_col ), im2( b_row+1:h-b_row, b_col+1:w-b_col ) );


return;




function [mssim, ssim_map] = ssim_index(img1, img2, K, window, L)

%========================================================================
%SSIM Index, Version 1.0
%Copyright(c) 2003 Zhou Wang
%All Rights Reserved.
%
%The author was with Howard Hughes Medical Institute, and Laboratory
%for Computational Vision at Center for Neural Science and Courant
%Institute of Mathematical Sciences, New York University, USA. He is
%currently with Department of Electrical and Computer Engineering,
%University of Waterloo, Canada.
%
%----------------------------------------------------------------------
%Permission to use, copy, or modify this software and its documentation
%for educational and research purposes only and without fee is hereby
%granted, provided that this copyright notice and the original authors'
%names appear on all copies and supporting documentation. This program
%shall not be used, rewritten, or adapted as the basis of a commercial
%software or hardware product without first obtaining permission of the
%authors. The authors make no representations about the suitability of
%this software for any purpose. It is provided "as is" without express
%or implied warranty.
%----------------------------------------------------------------------
%           是一个计算两幅图像结构相似性指数SSIM的算法
%This is an implementation of the algorithm for calculating the
%Structural SIMilarity (SSIM) index between two images. Please refer
%to the following paper:
%
%Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image
%quality assessment: From error measurement to structural similarity"
%IEEE Transactios on Image Processing, vol. 13, no. 4, Apr. 2004.
%
%Kindly report any suggestions or corrections to zhouwang@ieee.org
%
%----------------------------------------------------------------------
%
%Input : (1) img1: the first image being compared
%        (2) img2: the second image being compared
%        (3) K: constants in the SSIM index formula (see the above
%            reference). defualt value: K = [0.01 0.03]
%        (4) window: local window for statistics (see the above
%            reference). default widnow is Gaussian given by
%            window = fspecial('gaussian', 11, 1.5);
%        (5) L: dynamic range of the images. default: L = 255
%
%Output: (1) mssim: the mean SSIM index value between 2 images.
%            If one of the images being compared is regarded as 
%            perfect quality, then mssim can be considered as the
%            quality measure of the other image.
%            If img1 = img2, then mssim = 1.
%        (2) ssim_map: the SSIM index map of the test image. The map
%            has a smaller size than the input images. The actual size:
%            size(img1) - size(window) + 1.
%
%Default Usage:
%   Given 2 test images img1 and img2, whose dynamic range is 0-255
%
%   [mssim ssim_map] = ssim_index(img1, img2);
%
%Advanced Usage:
%   User defined parameters. For example
%
%   K = [0.05 0.05];
%   window = ones(8);
%   L = 100;
%   [mssim ssim_map] = ssim_index(img1, img2, K, window, L);
%
%See the results:
%
%   mssim                        %Gives the mssim value
%   imshow(max(0, ssim_map).^4)  %Shows the SSIM index map
%
%========================================================================


if (nargin < 2 | nargin > 5)
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

if (size(img1) ~= size(img2))
   mssim = -Inf;
   ssim_map = -Inf;
   return;
end

[M N] = size(img1);

if (nargin == 2)
   if ((M < 11) | (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);	%
   K(1) = 0.01;								      % default settings
   K(2) = 0.03;								      %
   L = 255;                                  %
end

if (nargin == 3)
   if ((M < 11) | (N < 11))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   window = fspecial('gaussian', 11, 1.5);
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 4)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   L = 255;
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

if (nargin == 5)
   [H W] = size(window);
   if ((H*W) < 4 | (H > M) | (W > N))
	   mssim = -Inf;
	   ssim_map = -Inf;
      return
   end
   if (length(K) == 2)
      if (K(1) < 0 | K(2) < 0)
		   mssim = -Inf;
   		ssim_map = -Inf;
	   	return;
      end
   else
	   mssim = -Inf;
   	ssim_map = -Inf;
	   return;
   end
end

C1 = (K(1)*L)^2;
C2 = (K(2)*L)^2;
window = window/sum(sum(window));
img1 = double(img1);
img2 = double(img2);

mu1   = filter2(window, img1, 'valid');
mu2   = filter2(window, img2, 'valid');
mu1_sq = mu1.*mu1;
mu2_sq = mu2.*mu2;
mu1_mu2 = mu1.*mu2;
sigma1_sq = filter2(window, img1.*img1, 'valid') - mu1_sq;
sigma2_sq = filter2(window, img2.*img2, 'valid') - mu2_sq;
sigma12 = filter2(window, img1.*img2, 'valid') - mu1_mu2;

if (C1 > 0 & C2 > 0)
   ssim_map = ((2*mu1_mu2 + C1).*(2*sigma12 + C2))./((mu1_sq + mu2_sq + C1).*(sigma1_sq + sigma2_sq + C2));
else
   numerator1 = 2*mu1_mu2 + C1;
   numerator2 = 2*sigma12 + C2;
	denominator1 = mu1_sq + mu2_sq + C1;
   denominator2 = sigma1_sq + sigma2_sq + C2;
   ssim_map = ones(size(mu1));
   index = (denominator1.*denominator2 > 0);
   ssim_map(index) = (numerator1(index).*numerator2(index))./(denominator1(index).*denominator2(index));
   index = (denominator1 ~= 0) & (denominator2 == 0);
   ssim_map(index) = numerator1(index)./denominator1(index);
end

mssim = mean2(ssim_map);

return