1.偏差与方差的区别
定义
偏差(bias):
偏差衡量了模型的预测值与实际值之间的偏离关系。通常在深度学习中,我们每一次训练迭代出来的新模型,都会拿训练数据进行预测,偏差就反应在预测值与实际值匹配度上,比如通常在keras运行中看到的准确度为96%,则说明是低偏差;反之,如果准确度只有70%,则说明是高偏差。
方差(variance):
方差描述的是训练数据在不同迭代阶段的训练模型中,预测值的变化波动情况(或称之为离散情况)。从数学角度看,可以理解为每个预测值与预测均值差的平方和的再求平均数。通常在深度学习训练中,初始阶段模型复杂度不高,为低方差;随着训练量加大,模型逐步拟合训练数据,复杂度开始变高,此时方差会逐渐变高。
形象理解
对于模型训练的意义
- 低偏差,低方差:这是训练的理想模型,此时蓝色点集基本落在靶心范围内,且数据离散程度小,基本在靶心范围内;
- 低偏差,高方差:这是深度学习面临的最大问题,过拟合了。也就是模型太贴合训练数据了,导致其泛化(或通用)能力差,若遇到测试集,则准确度下降的厉害;
- 高偏差,低方差:这往往是训练的初始阶段;
- 高偏差,高方差:这是训练最糟糕的情况,准确度差,数据的离散程度也差。
参考网址:https://zhidao.baidu.com/question/1996693927462822107.html
2.偏差与残差,方差间的区别
定义
残差(可以理解为噪声):
指预测结果与真实值之间的差异,这么一看,和模型偏差的定义很接近,两者的区别是偏差是模型拟合度不够导致。而残差是模型准确,但仍然与真实值有一定的差异,这里可以理解成噪声,噪声是随机的,意味着不可预测,而偏差不是随机产生的,可通过一定的特征工程进行预测
三者的关系形象理解
对模型起决定性影响的是偏差和方差,模型过于简单必然导致偏差过大,过于复杂必然导致方差过大,需根据图中折中选择。
上图可以分为两个部分,以中间的虚线隔开,左边部分为欠拟合状态,右边部分为过拟合状态,针对欠拟合和过拟合的处理方式如下:
a、欠拟合:偏差过大,做特征工程、减小(弱)正则化系数;
b、过拟合:方差过大,可增加样本、减少特征、增加(强)正则化系数;
偏差和方差贯穿整个建模过程,因此关注偏差和方差的影响,能够找到模型优化方向,而不是盲目的增加特征,增加样本不断试验。