数据思维具有框架性引导作用能够帮助确认分析角度、搭配分析方法、选择指标体系得出分析结论。但要知道数据思维不是一下子就学会了的需要长期的培养,日常生活中常用的数据分析思维技巧我们一起来学习一下。

  常见的数据分析思维:

  一、对比法

  对比法是一种挖掘数据规律的思维能够和任何技巧结合,一次合格的分析一定要用到N次对比。对比分为:

  (1)横向对比:同一层级不同对象比较,如江苏不同市茅台销售情况。

  (2)纵向对比:同一对象不同层级比较,如江苏南京2021年各月份茅台销售情况。

  (3)目标对比:常见于目标管理,如完成率等。

  (4)时间对比:如同比、环比、月销售情况等,很多地方都会用到时间对比。

  二、象限法象

  限法是运用坐标的方式,人工对数据进行划分从而传递数据价值将之转变为策略。象限法应用很广泛,像RFM模型、波士顿矩阵都是象限法思维。如RFM模型就是利用象限法,将用户分为8个不同的层级,从而对不同用户制定不同的营销策略。

  三、漏斗法

  漏斗思维本质上是一种流程思路,在确定好关键节点之后计算节点之间的转化率。这个思路同样适用于很多地方,像电商的用户购买路径分析、app的注册转化率等。著名的海盗模型AARRR模型就是以漏斗模型作为基础的,从获客、激活、留存、变现、自传播五个关键节点,分析不同节点之间的转化率找到能够提升的环节采取措施。

  四、二八法

  “世界上80%的财富掌握在20%的富人手里”,这句话你一定听过。这就是二八法则,也叫帕累托法则。这个方法的思维就是抓重点围绕找到的20%有效数据找到其特征,使之产生更大的效果。如一个商超进行产品分析的时候,就可以对每个商品的利润进行排序,找到前20%的产品,那这些产品就是能够带来较多价值的商品,再通过组合销售和降价销售等手段进一步激发其带来的收益回报。

  五、指数法

  指数思维是一种目标驱动型思维通过将无法利用的数据加工成指数达到聚焦的目的从而找到方向。但指数法没有统一的标准比较多依靠经验,一旦设立的话不会经常变动。

  六、假设法

  假设法一般用在进入新领域的时候没有历史数据参考,没有外部线索这个时候就需要假设。通过假设的数据进行反推再去制定计划,整个过程是先假设后验证再分析结果。如在对新产品进行定价的时候,根据成本去假设一个售价由销售情况去验证,再决定是否需要上调或者下调价格以达到最大利润。

  七、多维法多维法主要是通过对数据的切割,分成多个维度,通过立方体的形式进行数据展示。在对数据进行交叉分析的时候,可能会出现辛普森悖论与之而来的应对方法有钻取、上卷、切片、切块、旋转等。多维法的使用场景很广,比如一个app的用户分析,可以从注册数、用户偏好、用户兴趣和用户流失等角度进行分析。

  数据分析的过程,往往是先接触到个别事物,而后进行归纳总结,推及一般,再进行演绎推理,从一般推及个别,如此循环往复,不断积累经验。