监督学习(supervised learning):通过已有的训练样本(即已知数据以及其对应的输出)来训练,从而得到一个最优模型,再利用这个模型将所有新的数据样本映射为相应的输出结果,对输出结果进行简单的判断从而实现分类的目的,那么这个最优模型也就具有了对未知数据进行分类的能力。在社会中,我们在很小的时候就被大人教授这是鸟啊,那是猪啊,这个是西瓜、南瓜,这个可以吃、那个不能吃啊之类的,我们眼里见到的这些景物食物就是机器学习中的输入,大人们告诉我们的结果就是输出,久而久之,当我们见的多了,大人们说的多了,我们脑中就会形成一个抽象的模型,下次在没有大人提醒的时候看见别墅或者洋楼,我们也能辨别出来这是房子,不能吃,房子本身也不能飞等信息。上学的时候,老师教认字、数学公式啊、英语单词等等,我们在下次碰到的时候,也能区分开并识别它们。这就是监督学习,它在我们生活中无处不在。

无监督学习(unsupervised learning):我们事先没有任何训练数据样本,需要直接对数据进行建模。比如我们去参观一个画展,我们对艺术一无所知,但是欣赏完很多幅作品之后,我们面对一幅新的作品之后,至少可以知道这幅作品是什么派别的吧,比如更抽象一些还是更写实一点,虽然不能很清楚的了解这幅画的含义,但是至少我们可以把它分为哪一类。再比如我们在电影院看电影,对于之前没有学过相关电影艺术知识的我们,可能不知道什么是一部好电影,什么是一部不好的电影,可是在观看了很多部电影之后,我们脑中对电影就有了一个潜在的认识,当我们再次坐在电影院认真观看新上映的电影时,脑中就会对这部电影产生一个评价:怎么这电影这么不好啊,整个故事线是混乱的,一点也不清晰,比我之前看过的那些电影差远了,人物的性格也没有表现出来,关键是电影主题还搞偏了;哎呀,这个电影拍得确实好啊,故事情节和人物性格都很鲜明,而且场景很逼真,主角的实力表演加上他与生俱来的忧郁眼神一下把人物演活了。

再给大家举一个无监督学习的例子。远古时期,我们的祖先打猎吃肉,他们本身之前是没有经验而言的,当有人用很粗的石头去割动物的皮的时候,发现很难把皮隔开,但是又有人用很薄的石头去割,发现比别人更加容易的隔开动物的毛皮,于是,第二天、第三天、……,他们就知道了需要寻找比较薄的石头片来割。这些就是无监督学习的思想,外界没有经验和训练数据样本提供给它们,完全靠自己摸索。