目录:

🌻 论文概述

🌻 符号定义

🌴 MARL基本符号

🌴 Q-value Function

🌴 Advantage Funciton

🌻 Decomposition Lemma

🌻 Trust Region Learning

🌴 表示差异

🌴 Trust Region in Single Agent

🌴  Trust Region in Multi Agents

🌻 HATRPO

🌴 原理

🌴 伪代码

🌻 HAPPO

🌴 原理

🌴 伪代码

🌻 实验情况

🌴 SMAC

🌵 任务

🌵 结果

🌵 分析

🌴 Multi-Agent MuJoCo

🌵 任务

🌵 结果

🌵 分析


🌻 论文概述

2022 - Kuba - Multi-Agent Constrained Policy Optimisation

该论文将 trust region learning 推广至了MARL (multi-agent reinforcement learning):

其提出并证明了multi-agent advantage decomposition lemma,并基于此提出了多智能体的 sequential policy update scheme

而后,基于单智能体上的TRPO和PPO算法,基于新颖的多智能体策略更新方案,作者构建了针对多智能体的trust region算法:HATRPO (Heterogenous-Agent Trust Region Policy Optimisation) 和 HAPPO

作者证明了该算法的单调改进性 (monotonic improvement)。且该算法 no parameters sharing,也 no any restrictive assumptions on decomposibility of the joint value function.

关于homogenous (同质的) 和heterogenous (异质的):

  • Homogenous, sharing the same action space and policy parameters, which largely limits their applicability and harm the performance 
  • heterogenous, not need agents to share parameters, having their own action space

对比这两个词,再理解下HATRPO (H -> heterogenous) 的含义。将借由顺次更新各个智能体的策略实现这一设想

那么 homogenous,参数共享有什么缺点吗?

其实将 trust region learning 从 single-agent 推广到 MARL 已经有了一些先例,比如 MAPPO。但是它的推广方式十分简单,"equip all agents with one shared set of parameters and use agents' aggregated trajectories to conduct policy optimisation at every iteration"。它学习一个基于global state的centralized value function和一个 sharing policy(各个agent通过局部观测和共享策略做动作),而且并不能从理论上保证单调递增

那么MARL中参数共享 (共享策略空间)可能导致什么问题呢?

看一个例子,

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR

 证明如下(通过举反例证明还蛮有意思的;这个证明过程比较好懂):

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR_02

则在这个例子中,parameter sharing can lead to a suboptimal outcome that is exponentially-worse with the increasing number of agents.

该算法在 SMAC task 和 MuJoCo task 上为SOTA


还是那个学习顺序,建议先读透Natural PG,再看TRPO。有了TRPO的基础看PPO会很容易。然后再看这篇HATRPO、HAPPO。

这个推进关系上,每个算法都做了改进和变动,如果略过中间一环或者略过一环的某个推导过程,接下来的算法可能真的吃不透。例如,TRPO中并没有那么细致地讲NPG的推导过程;PPO虽延续了TRPO的思想,但是不再复述TRPO中步步推导的目标函数,而是直接讲其改进了。初学者学习trust region PG时,最好从地基起。


🌻 符号定义

🌴 MARL基本符号

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_trust region_03


作者新引入两个定义:Multi-agent Q-value Function 和 Multi-agent Advantage Function

🌴 Q-value Function

The multi-agent state-action value function Q for an arbitrary ordered agent subset 

  is defined as 

where 

 refers to its complement and 

 refers to the 

 agent in the ordered subset.

complement应该翻译成补集吧,

应该是指除了这1:m个agents外的agents,即

直观理解下,

 represents the

average return

if agents 

 take a joint action 

 at state s. 

按照我的理解,再白话一点 (部分用词不准确,大概是那个意思qaq),agents 

 的动作是固定的:

,Q是在该状态s、该动作组

条件下的average return。

是变量,不确定

采取什么动作,所以针对它求Q的期望

结合上面两段话,理解Q


🌴 Advantage Funciton

The multi-agent advantage function A of subsets 

 is defined as

where 

 and 

 are disjoint subsets.

Advantage Function指 "relative advantage",要减去 baseline.

在single agent时,

,减掉的baseline是状态s的状态函数

在multi agent时,对

这么理解: 

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_04

写好后截屏时候Prodrafts滑了下没截上,留下了这道斜线。 却发现Prodrafts居然没有橡皮擦(大离谱!),破坏了画面的线消不去了。幸亏我没有强迫症,唉

而且这个米色纸配这个灰色底色好丑啊显得qaq 后面还是白色吧


🌻 Decomposition Lemma

Multi-Agent Advantage Decomposition Lemma (pivotal)

In any cooperative Markov games, given a joint policy Π, for any state s, and any agent subset

, the below equations holds. 

The lemma shows that the joint advantage function can be decomposed into a summation of each agent's local advantages in the process of sequential update


解释一下,

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_05


Multi-Agent Advantage Decomposition Lemma证明如下:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_06

ps:从直观上理解从第一行到第二行的意思

🌻 Trust Region Learning

将首先写下 trust region learning 应用于 single agent 和 multi agent 时的差异的符号表示和推导顺序,并回顾下 single agent 上的 objective 推导过程,而后顺畅推广至 multi agents中

这里名词执意写 single agent 和 multi agents 而不写 TRPO 和 HATRPO 的原因是 trust region in single agent (描述于 那篇著名论文) / multi agents (描述于本篇论文) 是一种思想,一种scheme,而 TRPO 和 PPO 是前者思想的实现方式,HATRPO 和 HAPPO 是后者思想的实现方式


🌴 表示差异

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_07

ps:notion definition不同,一方面是本文作者下了multi agents时的 Q-value Function 和 Advantage Function 的新定义(已写于上一part),另一方面不同论文表示意思相同时可能用了不同符号(部分总结于这儿)。为了下面对比两篇论文数学公式时候顺畅一点,才写了这一部分。其实没什么影响,只是很正常地不同论文中表示不同


🌴 Trust Region in Single Agent

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_trust region_08


🌴  Trust Region in Multi Agents

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_09


fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_10


fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_11


推导过程中一些严格的数学证明:


关于 J(Π) 单调递增的严格证明:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_12

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR_13

证明中用到的 Lemma8 及其证明:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_14


然后作者又研究了一下该算法的收敛:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_15

This definition characterises the equilibrium point at convergence for cooperative MARL tasks. Based on this, we have the following result that describes the asymptotic convergent behaviour towards NE.


fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_16


fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR_17

Nash equilibrium (纳什平衡):平衡了,任何人都利益最大化,认为遵循协议行事强于违背协议。参考链接1参考链接2 , 参考链接3

Proposition2中涉及到的Corollary 1又涉及到蛮多推导和定义:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_18

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_trust region_19

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_trust region_20

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_21

使用归纳法证明,好长,不放了

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_22

最后的证明结果是,

终于得到了Corollary1: 

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_23

作者甚至证明了,

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_24

在TRPO中都没有看到类似证明,真的好严谨啊

还有一个连续性相关的推论一起放在这里:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_25

感觉涉及到好多凸优化的概念,看上面这些推导的时候,查了NE、凸优化convexity、compact set、close set、Bolzano-weierstrass theorem、lipschitz-continuity、variance decomposition、affine function 好多,实在懒得整理了,有空再说吧。可能会跟课程完整过一遍之后


则 Sequential Policy Update Scheme的伪代码:

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_增强学习_26


🌻 HATRPO

🌴 原理

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR_27

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_28

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_fabricjs中如何使用橡皮擦_29

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_ICLR_30



🌴 伪代码

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_31


🌻 HAPPO

🌴 原理

To further alleviate the computation burden from Hessian Matrix in HATRPO,one can follow the idea of PPO by considering only using first order derivatives. This is achieved by making agent 

 choose a policy parameter 

 which maimises the clipping objecvite of

The optimisation process can be performed by stochastic gradient methods such as Adam.


🌴 伪代码

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_32


🌻 实验情况

🌴 SMAC

🌵 任务

SMAC (StarCraftll Multi-Agent Challenge) contains a set of StarCraft maps in which a team of ally units aims to defeat the opponent team.


🌵 结果

在该任务上,IPPO、MAPPO 这类 parameter sharing 算法,和 HATRPO、HAPPO 这类 non-parameter sharing 算法都达到了100%

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_强化学习_33


🌵 分析

SMAC任务较简单,non-parameter sharing is not necessarily required,sharing policies is sufficient to solve SMAC tasks.


🌴 Multi-Agent MuJoCo

🌵 任务

A continuous control task. MuJoCo tasks challenge a robot to learn an optimal way of motion; Multi-Agent MuJoCo models each part of a robot as an independent agent, for example, a leg for a spider or an arm for a swimmer.


🌵 结果

HATRPO and HAPPO enjoy superior performance over those of parameter-sharing methods:IPPPO and MAPPO, and the gap enlarges with the number of agents increases.

HATRPO and HAPPO also outperform non-parameter sharing MADDPG with both in terms of reward values and variance.

fabricjs中如何使用橡皮擦 prodrafts的橡皮擦_trust region_34


🌵 分析

该任务较复杂,能较好与其它算法拉开差距,体现HATRPO和其背后原理的优越性

HATRPO比 参数共享方法 (MAPPO等) 性能好得多。而且随着智能体数目增加,两类算法差距越拉越大,这说明了modelling heterogeneous policies的必要性

HATRPO性能表现优于HAPPO,认为是 hard KL constraint 相较于 clipping  更接近原理描述