大数据组件之数据采集工具FLume介绍/快速入门
1 背景
在一个完整的离线大数据处理系统中,除了hdfs+mapreduce+hive组成分析系统的核心之外,还需要数据采集、结果数据导出、任务调度等不可或缺的辅助系统,而这些辅助工具在hadoop生态体系中都有便捷的开源框架,如图所示:
图:典型大规模离线数据处理平台
2 Flume日志采集框架
2.1 Flume介绍
1)Flume是一个分布式、可靠、和高可用的海量日志采集、聚合和传输的系统。
2)Flume可以采集文件,socket数据包、文件、文件夹、kafka等各种形式源数据,又可以将采集到的数据(下沉sink)输出到HDFS、hbase、hive、kafka等众多外部存储系统中。
3)一般的采集需求,通过对flume的简单配置即可实现
4)Flume针对特殊场景也具备良好的自定义扩展能力,因此,flume可以适用于大部分的日常数据采集场景
2.2 运行机制
1)Flume分布式系统中最核心的角色是agent,flume采集系统就是由一个个agent所连接起来形成
2)每一个agent相当于一个数据传递员,内部有三个组件:
a) Source:采集组件,用于跟数据源对接,以获取数据
b) Sink:下沉组件,用于往下一级agent传递数据或者往最终存储系统传递数据
c) Channel:传输通道组件,用于从source将数据传递到sink
2.3 Flume采集系统结构图
2.3.1 简单结构
单个agent采集数据
2.3.2 复杂结构
多级agent之间串联
3 安装Flume
3.1 安装步骤
1 Flume的安装非常简单,只需要解压即可,当然,前提是已有hadoop环境上传安装包到数据源所在节点上,如果未安装HDFS集群,详细见我的另一篇博客《零基础搭建Hadoop分布式集群》。
2 解压 tar -zxvf apache-flume-1.6.0-bin.tar.gz
3 进入flume的目录,修改conf下的flume-env.sh,在里面配置JAVA_HOME
4 根据数据采集的需求配置采集方案,描述在配置文件中(文件名可任意自定义)
5 指定采集方案配置文件,在相应的节点上启动flume agent
先用一个最简单的例子来测试一下程序环境是否正常
3.2 案例
1、先在flume的conf目录下新建一个配置文件(采集方案)
vi netcat-logger.properties
# 定义这个agent中各组件的名字
a1.sources = r1
a1.sinks = k1
a1.channels = c1
# 描述和配置source组件:r1
a1.sources.r1.type = netcat
a1.sources.r1.bind = localhost
a1.sources.r1.port = 44444
# 描述和配置sink组件:k1
a1.sinks.k1.type = logger
# 描述和配置channel组件,此处使用是内存缓存的方式
a1.channels.c1.type = memory
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100
# 描述和配置source channel sink之间的连接关系
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1
2 启动agent去采集数据
bin/flume-ng agent -c conf -f conf/netcat-logger.conf -n a1 -Dflume.root.logger=INFO,console
-c conf 指定flume自身的配置文件所在目录
-f conf/netcat-logger.con 指定我们所描述的采集方案
-n a1 指定我们这个agent的名字
3 测试
先要往agent的source所监听的端口上发送数据,让agent有数据可采
随便在一个能跟agent节点联网的机器上
telnet anget-hostname port (telnet localhost 44444)
3.3 采集案例
3.3.1 采集日志目录中的文件到HDFS
采集示意图,如图所示:
采集需求:某服务器的某特定目录下,会不断产生新的文件,每当有新文件出现,就需要把文件采集到HDFS中去
根据需求,首先定义以下3大要素
数据源组件,即source ——监控文件目录 : spooldir
spooldir特性:
1、监视一个目录,只要目录中出现新文件,就会采集文件中的内容
2、采集完成的文件,会被agent自动添加一个后缀:COMPLETED
3、所监视的目录中不允许重复出现相同文件名的文件
下沉组件,即sink——HDFS文件系统 : hdfs sink
通道组件,即channel——可用file channel 也可以用内存channel
配置文件编写:
#定义三大组件的名称
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# 配置source组件
agent1.sources.source1.type = spooldir
agent1.sources.source1.spoolDir = /home/hadoop/logs/
agent1.sources.source1.fileHeader = false
#配置拦截器
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = host
agent1.sources.source1.interceptors.i1.hostHeader = hostname
# 配置sink组件
agent1.sinks.sink1.type = hdfs
agent1.sinks.sink1.hdfs.path
=hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
#agent1.sinks.sink1.hdfs.round = true
#agent1.sinks.sink1.hdfs.roundValue = 10
#agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
Channel参数解释:
capacity:默认该通道中最大的可以存储的event数量
trasactionCapacity:每次最大可以从source中拿到或者送到sink中的event数量
keep-alive:event添加到通道中或者移出的允许时间
测试阶段,启动flume agent的命令:
bin/flume-ng agent -c ./conf -f ./dir-hdfs.conf -n agent1 -Dflume.root.logger=DEBUG,console
-D后面跟的是log4j的参数,用于测试观察
生产中,启动flume,应该把flume启动在后台:
nohup bin/flume-ng agent -c ./conf -f ./dir-hdfs.conf -n agent1 1>/dev/null 2>&1 &
3.3.2 2采集文件到HDFS
采集需求:比如业务系统使用log4j生成的日志,日志内容不断增加,需要把追加到日志文件中的数据实时采集到hdfs
根据需求,首先定义以下3大要素
采集源,即source——监控文件内容更新 : exec ‘tail -F file’
下沉目标,即sink——HDFS文件系统 : hdfs sink
Source和sink之间的传递通道——channel,可用file channel 也可以用 内存channel
配置文件:
agent1.sources = source1
agent1.sinks = sink1
agent1.channels = channel1
# Describe/configure tail -F source1
agent1.sources.source1.type = exec
agent1.sources.source1.command = tail -F /home/hadoop/logs/access_log
agent1.sources.source1.channels = channel1
#configure host for source
agent1.sources.source1.interceptors = i1
agent1.sources.source1.interceptors.i1.type = host
agent1.sources.source1.interceptors.i1.hostHeader = hostname
# Describe sink1
agent1.sinks.sink1.type = hdfs
#a1.sinks.k1.channel = c1
agent1.sinks.sink1.hdfs.path =hdfs://hdp-node-01:9000/weblog/flume-collection/%y-%m-%d/%H-%M
agent1.sinks.sink1.hdfs.filePrefix = access_log
agent1.sinks.sink1.hdfs.maxOpenFiles = 5000
agent1.sinks.sink1.hdfs.batchSize= 100
agent1.sinks.sink1.hdfs.fileType = DataStream
agent1.sinks.sink1.hdfs.writeFormat =Text
agent1.sinks.sink1.hdfs.rollSize = 102400
agent1.sinks.sink1.hdfs.rollCount = 1000000
agent1.sinks.sink1.hdfs.rollInterval = 60
agent1.sinks.sink1.hdfs.round = true
agent1.sinks.sink1.hdfs.roundValue = 10
agent1.sinks.sink1.hdfs.roundUnit = minute
agent1.sinks.sink1.hdfs.useLocalTimeStamp = true
# Use a channel which buffers events in memory
agent1.channels.channel1.type = memory
agent1.channels.channel1.keep-alive = 120
agent1.channels.channel1.capacity = 500000
agent1.channels.channel1.transactionCapacity = 600
# Bind the source and sink to the channel
agent1.sources.source1.channels = channel1
agent1.sinks.sink1.channel = channel1
两个agent级联
3.3.3 更多source和sink组件
Flume支持众多的source和sink类型,详细手册可参考官方文档