计算机为了方便算减法,规定了一种存储负数的方式,下边讨论一下。
计算机为了算减法,利用了同余的性质。
同余的定义是 a ≡ b ( mod m ) ,即 a mod m == b mod m ,例如 5 ≡ 17 mod ( 12 )。百度百科
同余有两个性质
反身性:a ≡ a ( mod m );
同余式相加:若 a ≡ b ( mod m ),c ≡ d ( mod m ),则 a + c ≡ b + d ( mod m );
现在我们进行模 16 的加法操作,先熟悉下下边的几个式子。
2 + 14 = 0
2 + (-3) = 15
5 + 15 = 4
重点来了!
计算 4 - 2 怎么算呢?
也就是 4 + (- 2)
4 ≡ 4(mod 16)
-2 ≡ 14(mod 16)
所以 4 + (- 2)= 4 + 14 = 2。
我们利用同余的性质,把减法成功转换成了加法,所以我们只需要在计算机里边将 -2 存成 14 就行了。我们这里减去 2 就等价于加上 14。
再比如 13 - 7 ,也就是 13 + (-7)
13 ≡ 13 (mod 16)
-7 ≡ 9(mod 16)
所有 13 + (- 7)= 13 + 9 = 6
我们成功把减 7 转换成了加上 9。
减 2 转换成加 14,减 7 转换成加 9,这几组数有什么联系呢?是的 2 + 14 = 16,7 + 9 = 16,他们相加通通等于 16,也就是我们取的模。有种互补的感觉,所以我们把 14 叫做 - 2 的补数,9 叫做 - 7 的补数。
可以看到,我们用一些正数表示了负数,总共有 16 个数,除去 0,还剩 15 个数,不可避免的是,这 16 个数,正数和负数的个数会相差 1,我们来看看是正数多,还是负数多。
上边的列出的数,应该都没异议吧,那么正数多还是负数多呢?就取决于 8 代表多少了。
8 + 1 = 9 ,9 代表 -7 ,而 - 8 + 1 = - 7,所以 8 其实代表 - 8 。
所以 0 到 15 这 16 个数字可以表示的范围是 -8 ~ 7,-8 没有对称的正数。
我们再来看看计算机里是怎么存的,我们都知道,计算机中是以二进制的方式存储的。假设我们计算机能存储 4 位。范围就是 0000 到 1111,也就是 0 到 15。
我们利用这个表格,求几个例子。
2 - 3 = 2 + (-3)= 2 的补数 + - 3 的补数 = 0010 + 1101 = 1111
而看表格, 1111 代表的数就是 -1 ,从而我们用加法计算出了 2 - 3 = - 1。
-3 - 2 = (-3)+(-2)= -3 的补数 + -2 的补数 = 1101 + 1110 = 1011
我们可以看到 1101 + 1110 本来等于 1 1011 ,因为只存储 4 位,所以最高位被丢掉了,其实这就进行了取模的操作,减去了 16 。如果我们看所对应的十进制是怎么操作的, 1101 表示 13,1110 表示 14 ,13 + 14 = 27 ,如果是模 16 操作下,就是 11 ,而 11 就是上边的结果 1011,看表格它代表的数是 - 5,- 3 - 2 = - 5 ,没毛病。
而且我们发现用这种表示方式,所有的正数首位都是 0 ,负数的首位都是 1 ,我们可以这样想。
假设正数和负数的首位相同,假如首位都是 0。
那么比如 a = 0010 这个正数,如果我们去找它的相反数 b,也就是对应的负数。由假设可以知道,它的相反数的最高位也是 0。即 0xxx 的形式。为了使得 a 和它的相反数相加等于 0,我们必须使得相反数 b 的第 3 位是 1,即 0x10,才能使得第 3 位的和是 0。但这样的话,第 3 位产生了进位, b 的第 2 位也得是 1,所以 b 就成了 0110,但这样虽然使得最后 3 位的和变成了 0,但是第 1 位我们假设了它是 0,由于第 2 位产生的进位,这样 a 和 b 相加不是 0 了,产生矛盾。所以假设不成立。所以正数和负数的首位一定不同,如果首位 0 代表正数,那么负数的首位一定是 1。
接下来的问题,给出一个数我们总不能查表去看它的补码吧,我们如何得出补码?
对于正数,看表格,我们直接写原码就可以了,例如 7 就是 0111 。
负数呢?
我们之前讨论过,对于模 16 的话,- 2 的补码是 14,也就是 16 - 2。- 7 的补码是 9,也就是 16 - 7 = 9。
我们从二进制的方式看一下。
我们来求 - 2 的补码,用 16 - 2 = 1 0000 - 0010 = ( 1111 + 1 ) - 0010 = ( 1111 - 0010 ) + 1 = 1101 + 1 = 1110 。
为什么转换成 1111 减去一个数,因为用 1111 减去一个数,虽然是减法,但其实只要把这个数按位求反即可。也就是把 2, 0010 按位求反变成 1101,再加上 1 就是 -2 的补码形式了,「按位取反,末位加 1 」这个口诀是不是很熟悉,哈哈,这就是快速求补码的法则。但我们不要忘了它的本质,其实是用模长减去它,但是计算机并不会减法,而是巧妙的转换到了取反再加 1 。
逆过程呢?如果我们知道了计算机存了个数 1110,那么它代表多少呢?首先首位是 1 ,它一定是一个负数,其次它是怎么得来的呢?往上翻,其实是用 16 - 2 =1110 得到的,我们现在是准备求 2 ,用 16 减去它就可以了,也就是 16 - 1110 = 1 0000 - 1110 = (1111 + 1)- 1110 = (1111 - 1110) + 1 = 0010。巧了,依旧是按位取反,末位加 1。而 0010 就是 2,所以 1110 就代表 - 2。
综上,其实我们就是用原来的一部分正数(其实说它是正数也无非是我们自己定义的,想起一句话,数学就像一门宗教,你要么完全相信,要么完全不信,哈哈)表示了负数,而现在为了实现减法,我们把 1xxx 的不当做正数了,把它定义为负数,是的没有负号,但开头是 1 ,我们就说它是负数,再取个名字就叫补数吧(其实就是它代表的负数离它最近的一个和它同余的数,例如 - 3,和它同余的最近的正数就是 13 了,所以 -3 的补数就是 13),再利用余数定理,以及计算机高位溢出等效于求模的性质,巧妙的用取反以及加法实现了减法。
再扩展一下,那么利用这个我们怎么不用乘法,来实现求相反数呢?
求 x 的相反数,我们用 0 减去 x 就行。也就是 x 的相反数 = 0 - x = 0 + ( - x ) = -x,-x 在计算机中怎么存的呢,存的是 -x 的补码,-x 的补码怎么求?把 x 按位取反,末位加 1 。Java 中就是 ~x + 1 了,此时所存的就是 x 对应的那个负数,即它的相反数了。
3 的相反数怎么求?这求什么求呀,添个负号就行了,-3 呀!但是计算机可没我们这么智能,它只存储 01,所以我们把 -3 的补码求出来存到计算机里就可以了。 即把 3 (0011) 按位取反,末位加 1,得到 1101 就是它的补码,我们然后把 1101 存到了计算机中,我们以为它是 13 ,但我们给计算机重新定义了规则,它是补码,首位就代表了它是负数,计算机根据规则(按位取反,末位加 1 ,再添个负号)把它又还原成了我们所理解的 - 3。从而我们不进行乘法,根据我们给计算机制定的规则,实现了求相反数。