Matlab图像处理(进阶版)路径规划(Matlab)神经网络预测与分类(Matlab)优化求解(Matlab)语音处理(Matlab)信号处理(Matlab)车间调度(Matlab)

⛄一、深度学习卷积神经网络CNN水果识别分类简介

深度学习卷积神经网络(CNN)是一种广泛应用于图像识别和分类任务的深度学习模型。CNN通过多层卷积和池化操作来提取图像的特征,并通过全连接层进行分类。

CNN水果识别分类的原理如下:
(1)数据准备:首先,需要准备一个包含不同种类水果的图像数据集。这个数据集应该包含水果的正面图像,并且每个图像都要有相应的标签,表示该图像所属的水果类别。
(2)卷积层:CNN的第一层通常是卷积层。卷积层使用一组可学习的滤波器(也称为卷积核)对输入图像进行卷积操作,从而提取图像的局部特征。每个滤波器会生成一个特征图,表示在输入图像中检测到的某种特征。
(3)激活函数:在卷积层之后,通常会应用一个非线性激活函数(如ReLU)来增加网络的非线性能力。激活函数将卷积层输出的特征图进行非线性变换,使网络能够学习更复杂的特征。
(4)池化层:池化层用于减小特征图的尺寸,并保留最重要的特征。常用的池化操作是最大池化,它从输入特征图中提取最大值作为输出。池化操作可以减少计算量,并增加网络对平移不变性的鲁棒性。
(5)全连接层:在经过多个卷积层和池化层之后,通常会添加一个或多个全连接层。全连接层将前面层的特征进行扁平化,并通过权重矩阵进行线性变换。最后一层的输出经过softmax函数,得到每个类别的概率分布。
(6)损失函数和优化器:CNN的训练过程中使用损失函数来度量模型预测结果与真实标签之间的差异。常用的损失函数是交叉熵损失函数。优化器则用于更新网络参数,常用的优化器有随机梯度下降(SGD)和Adam。
(7)训练和测试:通过反向传播算法,CNN可以根据训练数据不断调整网络参数,使得模型能够更好地拟合训练数据。在训练完成后,可以使用测试数据评估模型的性能。

⛄二、部分源代码

function varargout = guide(varargin)
% GUIDE MATLAB code for guide.fig
% GUIDE, by itself, creates a new GUIDE or raises the existing
% singleton*.
%
% H = GUIDE returns the handle to a new GUIDE or the handle to
% the existing singleton*.
%
% GUIDE(‘CALLBACK’,hObject,eventData,handles,…) calls the local
% function named CALLBACK in GUIDE.M with the given input arguments.
%
% GUIDE(‘Property’,‘Value’,…) creates a new GUIDE or raises the
% existing singleton*. Starting from the left, property value pairs are
% applied to the GUI before guide_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property application
% stop. All inputs are passed to guide_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE’s Tools menu. Choose “GUI allows only one
% instance to run (singleton)”.
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help guide

% Last Modified by GUIDE v2.5 25-May-2022 10:54:29

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct(‘gui_Name’, mfilename, …
‘gui_Singleton’, gui_Singleton, …
‘gui_OpeningFcn’, @guide_OpeningFcn, …
‘gui_OutputFcn’, @guide_OutputFcn, …
‘gui_LayoutFcn’, [] , …
‘gui_Callback’, []);
if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% — Executes just before guide is made visible.
function guide_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to guide (see VARARGIN)

% Choose default command line output for guide
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes guide wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% — Outputs from this function are returned to the command line.
function varargout = guide_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% — Executes on button press in pushbutton1.
function pushbutton1_Callback(hObject, eventdata, handles)
imds =imageDatastore(‘Training’, ‘IncludeSubfolders’,true, ‘LabelSource’,‘foldernames’);
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,‘randomized’);
idx = randperm(numel(imdsValidation.Files),2);
img = [ readimage(imdsValidation,idx(1)),readimage(imdsValidation,idx(2))];
axes(handles.axes1);
imshow(img);
handles.in=img;
guidata(hObject, handles)

% — Executes on button press in pushbutton2.
function pushbutton2_Callback(hObject, eventdata, handles)
imds =imageDatastore(‘Training’, ‘IncludeSubfolders’,true, ‘LabelSource’,‘foldernames’);
[imdsTrain,imdsValidation] = splitEachLabel(imds,0.7,‘randomized’);
idx = randperm(numel(imdsValidation.Files),4);
img = [ readimage(imdsValidation,idx(1)),readimage(imdsValidation,idx(2)),readimage(imdsValidation,idx(3)),readimage(imdsValidation,idx(4))];
axes(handles.axes1);
imshow(img);

handles.in=img;
guidata(hObject, handles)

⛄三、运行结果

水果图像识别算法新手_matlab


水果图像识别算法新手_神经网络_02


水果图像识别算法新手_无人机_03


水果图像识别算法新手_路径规划_04