序
求最短路径的算法有很多,各有优劣。
比如Dijkstra(及其堆(STL-priority_queue)优化),但是无法处理负环的情况;
比如O(n^3)的Floyd算法;比如Bellman-Ford算法,可以处理负环的情况。
SPFA算法就是基于Bellman-Ford算法的改进。
SPFA,全称为Shortest Path Faster Algorithm,也被很多Oler笑称为Super Fast Algorithm.
无可否认的是,SPFA的效率的确很高。
逻辑与思路
SPFA的核心代码很短,只有三十行(但是还有各种初始化)。
乍一看就是一个广度优先搜索。下文的代码是一个指针操作的,进行一定优化的,使用一个不太常见的方法存边写的spfa函数。
初始化
1.将所有点的距离设为INF(memset(0x3f)),及无穷大,将到源点的距离设为(dis[st] = 0);
2.将源点压入队列q;(q.push_back(st));
循环执行直到队列为空
取出队首节点cur,对所有与cur相连的节点进行以下操作:
如果源点到cur的距离与cur到该节点距离的和小于源点到该节点的距离,则更新源点对该节点的距离,并将该节点压入队列;
也就是: if(dis[cur] + edge[cur, i] < dis[i]) update(dis[i]); q.push_back(i);
最终得到的各点距离就是最短路径(如果不连通,则距离为初始值INF)。
原理:
从直觉层面上想,这不难理解。
如果该节点的最短路径被更新(也就是变小),则说明通过该节点到其他节点的路径长度便有可能因此变小。
于是压入队列,等待下一次操作。
优化
用一个双端队列维护。
如果得到新的距离dis[ne]小于位于队首的距离dis[q.front()],则将该节点压入队首,反之则压入队尾。实测效率的确更高。
另一个优化是队列节点进出现一次。
用一个数组wh[I]表示节点i是否在队列中,如果在则只更新距离不压入队列(因为队列里有)。
图的存储方式
大致有三种方式存储。
一是邻接矩阵,不推荐,除了好写一点,又费空间又费时间。
二是前向心,存每条弧的next指向与之节点相连的另一节点。不常写,不做评价。
三是将所有弧存入一个vector(或者数组),记录所有节点与之相连弧的编号。下文的代码实现便是基于这种存储方式。
具体存储方式:
1.读入每一条弧的信息,将它们存入vector中。
2.每次存储时,将该弧的标号(或者指针)存到另一个vector中。
例如读入一条弧: edge a -> b, weight(a, b) = c.
存边的结构体存储每条弧的始点,终点与权重(最短路径则不需要存权重)
struct Edge{
int st, en, weight;
Edge(){}
Edge(int s, int e, int w):
st(s), en(e), weight(w){}
};
那么按照以下操作。(如果是有向图则不需要存回边)
read(a); read(b); read(c);
edge.push_back(Edge(a, b, c));
edge.push_back(Edge(b, a, c));
arc[a].push_back(edge.size()-2);
arc[b].push_back(edge.size()-1);
当然也可选择只存一次边,但是如果是存储网络流,则必须这么存。
那么遍历所有与节点x相连的弧便是这样的。
for(int i = 0, i_end_ = arc[x].size(); i < i_end_; ++i)
{
int j = arc[x][i];
Edge& e = edge[j];
ne = e.en;//e.en就是弧的终点
}
SPFA代码实现
void Spfa()
{
int q[maxn];
int *s = q, *t = s + 1, *en = q + n + 1;
int cur, ne, cur_dis;
bool wh[maxn] = {0};
Edge *j;
memset(dis, 0x3f, sizeof dis);
dis[st] = 0;
*s = st;
while(s != t)
{
cur = *s++;
s = s == en ? q : s;
wh[cur] = 0;
REP(i, 0, arc[cur].size())//for(int i = 0; i < arc[cur].size(); ++i)
{
j = arc[cur][i];
ne = j -> en;
cur_dis = dis[cur] + j -> weight;
if(cur_dis < dis[ne])
{
dis[ne] = cur_dis;
if(wh[ne]) continue;
wh[ne] = 1;
if(dis[ne] < dis[*s])
{
s = s == q ? en - 1 : s - 1;
*s = ne;
}
else *t++ = ne;
t = t == en ? q : t;
}
}
}
return ;
}
以上代码为了提高整体效率,牺牲了一定可读性,基本使用指针操作。
但是效率的提高是非常可观的。从800+ms -> 400+ms。
可以在洛谷上交一下板子题。
luogu P3371 【模板】单源最短路径
完整代码实现
/*
About:
From: luogu 3371
Auther: kongse_qi
Date:2017/05/24
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <vector>
#include <ctype.h>
namespace IO{
static int in;
static char *X, *Buffer;
static char c;
void Get_All()
{
fseek(stdin, 0, SEEK_END);
long long file_lenth = ftell(stdin);
rewind(stdin);
X = Buffer = (char*)malloc(file_lenth);
fread(Buffer, 1, file_lenth, stdin);
return ;
}
void Get_Int()
{
in = 0;
while(!isdigit(*X)) ++X;
while(isdigit(*X))
{
in = in * 10 + *(X++) - '0';
}
return ;
}
}//读入优化,注意必须是文件读入
using namespace IO;
using namespace std;
#define read(x) Get_Int(), x = in;
#define REP(i, a, b) for (int i = (a), i##_end_ = b; i < i##_end_; ++i)
#define min(a, b) a > b ? b : a
const int maxn = 10005;
const int INF = 2147483647;
const int maxm = 500005;
struct Edge
{
int st, en, weight;
Edge(){}
Edge(int f, int t, int w):
st(f), en(t), weight(w){}
};
int n, m, st;
int dis[maxn];
Edge edge[maxm], *cur = edge;
vector<Edge*> arc[maxn];
int q[maxn];
void Add_Edge(int& st, int& en, int& weight)
{
*cur = Edge(st, en, weight);
arc[st].push_back(cur++);
return ;
}
void Read()
{
int a, b, c;
read(n); read(m); read(st);
REP(i, 0, m)
{
read(a); read(b); read(c);
if(a != b)
{
Add_Edge(a, b, c);
}
}
return ;
}
void Spfa()
{
int *s = q, *t = s + 1, *en = q + n + 1;
int cur, ne, cur_dis;
bool wh[maxn] = {0};
Edge *j;
memset(dis, 0x3f, sizeof dis);
dis[st] = 0;
*s = st;
while(s != t)
{
cur = *s++;
s = s == en ? q : s;
wh[cur] = 0;
REP(i, 0, arc[cur].size())
{
j = arc[cur][i];
ne = j -> en;
cur_dis = dis[cur] + j -> weight;
if(cur_dis < dis[ne])
{
dis[ne] = cur_dis;
if(wh[ne]) continue;
wh[ne] = 1;
if(dis[ne] < dis[*s])
{
s = s == q ? en - 1 : s - 1;
*s = ne;
}
else *t++ = ne;
t = t == en ? q : t;
}
}
}
return ;
}
void Print()
{
int *p = dis + 1;
REP(i, 1, n + 1)
{
*p = *p == 0x3f3f3f3f ? INF : *p;
printf("%d ", *p++);
}
return ;
}
int main()
{
freopen("test.in", "r", stdin);
Get_All();
Read();
Spfa();
Print();
return 0;
}
至此结束。