文章目录

  • Spark Lineage(血统)
  • 窄依赖
  • 宽依赖
  • DAG
  • 任务划分


Spark Lineage(血统)

  • Lineage利用内存加快数据加载,在其它的In-Memory类数据库或Cache类系统中也有实现。Spark的主要区别在于它采用血统(Lineage)来时实现分布式运算环境下的数据容错性(节点失效、数据丢失)问题。RDD Lineage被称为RDD运算图RDD依赖关系图,是RDD所有父RDD的图。它是在RDD上执行transformations函数并创建逻辑执行计划(logical execution plan)的结果,是RDD的逻辑执行计划。相比其它系统的细颗粒度的内存数据更新级别的备份或者LOG机制,RDD的Lineage记录的是粗颗粒度的特定数据转换(Transformation)操作(filter, map, join etc.)行为。当这个RDD的部分分区数据丢失时,它可以通过Lineage找到丢失的父RDD的分区进行局部计算来恢复丢失的数据,这样可以节省资源提高运行效率。这种粗颗粒的数据模型,限制了Spark的运用场合,但同时相比细颗粒度的数据模型,也带来了性能的提升。
  • RDD只支持粗粒度转换,即在大量记录上执行的单个操作。将创建RDD的一系列Lineage(血统)记录下来,以便恢复丢失的分区。RDD的Lineage会记录RDD的元数据信息和转换行为,当该RDD的部分分区数据丢失时,它可以根据这些信息来重新运算和恢复丢失的数据分区。

注意:RDD和它依赖的父RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency)。

窄依赖

  • 窄依赖指的是每一个父RDD的Partition最多被子RDD的一个Partition使用,窄依赖我们形象的比喻为独生子女.

宽依赖

  • 宽依赖指的是多个子RDD的Partition会依赖同一个父RDD的Partition,会引起shuffle,总结:宽依赖我们形象的比喻为超生.

DAG

  • DAG(Directed Acyclic Graph)叫做有向无环图,原始的RDD通过一系列的转换就就形成了DAG,根据RDD之间的依赖关系的不同将DAG划分成不同的Stage,对于窄依赖,partition的转换处理在Stage中完成计算。对于宽依赖,由于有Shuffle的存在,只能在parent RDD处理完成后,才能开始接下来的计算,因此宽依赖是划分Stage的依据

任务划分

RDD任务切分中间分为:Application、Job、Stage和Task

  • Application:初始化一个SparkContext即生成一个Application
  • Job:一个Action算子就会生成一个Job
  • Stage:根据RDD之间的依赖关系的不同将Job划分成不同的Stage,遇到一个宽依赖则划分一个Stage。
  • Task:Stage是一个TaskSet,将Stage划分的结果发送到不同的Executor执行即为一个Task。

注意:Application->Job->Stage-> Task每一层都是1对n的关系。

WordCount的运行规划图

spark on yanr混用版本_spark


你知道的越多,你不知道的越多。
有道无术,术尚可求,有术无道,止于术。
如有其它问题,欢迎大家留言,我们一起讨论,一起学习,一起进步