1.用自己的话描述一下,什么是逻辑回归,与线性回归对比,有什么不同?
逻辑回归:logistic回归是一种广义线性回归,因此与多重线性回归分析有很多相同之处。它们的模型形式基本上相同,都具有 w‘x+b,其中w和b是待求参数,其区别在于他们的因变量不同,多重线性回归直接将w‘x+b作为因变量,即y =w‘x+b,而logistic回归则通过函数L将w‘x+b对应一个隐状态p,p =L(w‘x+b),然后根据p 与1-p的大小决定因变量的值。如果L是logistic函数,就是logistic回归,如果L是多项式函数就是多项式回归。
与线性回归的不同之处:
一、性质不同
1、逻辑回归:是一种广义的线性回归分析模型。
2、线性回归:利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。
二、应用不同
1、逻辑回归:常用于数据挖掘,疾病自动诊断,经济预测等领域。
2、线性度回归:常运用于数学、金融、趋势线、经济学等领域。
2.自述一下什么是过拟合和欠拟合?
过拟合:指一个假设在训练数据上能够获得比其他假设更好的拟合(训练误差小)但是在训练数据外的数据集上却不能很好的拟合数据(测试误差大)。此时模型的泛化能力较差,不利于推广。
欠拟合:欠拟合比较好理解就是模型简单或者说语料集偏少、特征太多,在训练集上的准确率不高,同时在测试集上的准确率也不高,这样如何训练都无法训练出有意义的参数,模型也得不到较好的效果,这个优缺点就不说了,基本上欠拟合就选择合理的模型,合理的特征,提高训练集就行。
3.思考一下逻辑回归的应用场景有哪些?
广告点击率,是否为垃圾邮件,是否患病,金融诈骗,虚假账号