Find the nth digit of the infinite integer sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …
Note:
n is positive and will fit within the range of a 32-bit signed integer (n < 231).
Example 1:
Input:
3
Output:
3
Example 2:
Input:
11
Output:
0
Explanation:
The 11th digit of the sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, … is a 0, which is part of the number 10.
下面是C++的做法
我们首先来分析自然数序列和其位数的关系,前九个数都是1位的,然后10到99总共90个数字都是两位的,100到999这900个数都是三位的,那么这就很有规律了,我们可以定义个变量cnt,初始化为9,然后每次循环扩大10倍,再用一个变量len记录当前循环区间数字的位数,另外再需要一个变量start用来记录当前循环区间的第一个数字,我们n每次循环都减去len*cnt (区间总位数),当n落到某一个确定的区间里了,那么(n-1)/len就是目标数字在该区间里的坐标,加上start就是得到了目标数字,然后我们将目标数字start转为字符串,(n-1)%len就是所要求的目标位,最后别忘了考虑int溢出问题,我们干脆把所有变量都申请为长整型的好了,
代码如下:
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream>
#include <functional>
#include <bitset>
#include <numeric>
#include <cmath>
#include <regex>
using namespace std;
class Solution
{
public:
int findNthDigit(int n)
{
long long lenOfDit = 1, start = 1, count = 9;
while (n > lenOfDit*count)
{
n -= lenOfDit*count;
lenOfDit += 1;
count *= 10;
start *= 10;
}
int num = start + (n - 1) / lenOfDit;
string s = to_string(num);
return s[(n - 1) % lenOfDit] - '0';
}
};