K-D树,即K-Dimensional Tree,是一种高维索引树型数据结构。常用于大规模高维数据空间的最邻近或者K邻
近查找,例如图像检索中高维图像特征向量的K邻近匹配,对KNN算法的优化等。
Contents
1. K-D树的基本原理
2. K-D树的改进(BBF算法)
3. K-D树的C++实现
4. K-D树的开源框架介绍
1. K-D树的基本原理
K-D树实际上是一棵高维二叉搜索树,与普通二叉搜索树不同的是,树中存储的是一些K维数据。先回忆一下二
叉搜索树(BST),它是一棵具有如下性质的树
(1)若它的左子树不为空,那么左子树上所有节点的值均小于它的根节点的值。
(2)若它的右子树不为空。那么右子树上所有节点的值均大于它的根节点的值。
(3)它的左右子树也分别是一棵二叉搜索树。
二叉搜索树在建树时,按照上述规则分别插入即可。而在搜索时,从根节点开始往下查找。可以看出二叉搜索
树的建树平均时间复杂度为
,最坏时间复杂度为
,查找的平均时间复杂度为
, 最坏时间复杂度为
,由于二叉搜索树不是平衡的,可能退化为一条链,这种情况就是最坏情况了。
普通的二叉搜索树是一维的,当推广到K维后,就是我们的K-D树了。在K-D树中跟二叉搜索树差不多,也是将
一个K维的数据与根节点进行比较,然后划分的,这里的比较不是整体的比较,而是选择其中一个维度来进行比
较。那么在K-D树中我们需要解决两个重要的问题
(1)每一次划分时,应该选择哪个维度?
(2)在某个维度上划分时,如何保证左右子树节点个数尽量相等?
首先来看问题(1)每次划分时,应该选择哪个维度 ?
最简单的做法就是一个维度一个维度轮流着来,但是仔细想想,这种方法不能很好地解决问题。假设有这样一
种情况:我们需要切一个豆腐条,长度要远远大于宽度,要想把它切成尽量相同的小块,显然是先按照长度来
切,这样更合理,如果宽度比较窄,那么这种效果更明显。所以在K-D树中,每次选取属性跨度最大的那个来
进行划分,而衡量这个跨度的标准是什么? 无论是从数学上还是人的直观感受方面来说,如果某个属性的跨度
越大,也就是说越分散,那么这组数据的方差就越大,所以在K-D树进行划分时,可以每次选择方差最大的属性
来划分数据到左右子树。
问题(1)已解决,现在再来看问题(2),在某个维度上划分时,如何保证左右子树节点个数尽量相等?
当我们选择好划分的属性时,还要根据某个值来进行左右子树划分,而这个值就是一个划分轴,回忆一下,在快
速排序算法中,也有一个划分轴pivot。在K-D树的划分中,这个轴的选取很关键,要保证划分后的左右子树尽
量平衡,那么很显然选取这个属性的值对应数组的中位数作为pivot,就能保证这一点了。
这样就解决了K-D树中最重要的两个问题。接下来看K-D树是如何进行查找的。
假设现在已经构造好了一棵K-D树,最邻近查找的算法描述如下
(1)将查询数据Q从根节点开始,按照Q与各个节点的比较结果向下遍历,直到到达叶子节点为止。到达叶子节
点时,计算Q与叶子节点上保存的所有数据之间的距离,记录最小距离对应的数据点,假设当前最邻近点为
p_cur,最小距离记为d_cur。
(2)进行回溯操作,该操作的目的是找离Q更近的数据点,即在未访问过的分支里,是否还有离Q更近的点,它
们的距离小于d_cur。
以上就是K-D树的基本原理。
2. K-D树的改进(BBF算法)
上述中的K-D树存在缺点,当维数比较大的时候,建树后的分支自然会增多,进而回溯的次数增加,算法效率会
随之降低。在图像检索中,特征往往是高维的,很有必要对K-D树算法进行改进,这就是即将要介绍的BBF算法。
BBF算法我就不详细说了,具体可以参考如下两篇文章
(2)从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
3. K-D树的C++实现
以HDU4347为例,给出K-D树的C++的简易代码。 题目:The Closest M Points
代码:
#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
#include <math.h>
#include <queue>
using namespace std;
#define N 50005
#define lson rt << 1
#define rson rt << 1 | 1
#define Pair pair<double, Node>
#define Sqrt2(x) (x) * (x)
int n, k, idx;
struct Node
{
int feature[5]; //定义属性数组
bool operator < (const Node &u) const
{
return feature[idx] < u.feature[idx];
}
}_data[N]; //_data[]数组代表输入的数据
priority_queue<Pair> Q; //队列Q用于存放离p最近的m个数据
class KDTree{
public:
void Build(int, int, int, int); //建树
void Query(Node, int, int, int); //查询
private:
Node data[4 * N]; //data[]数组代表K-D树的所有节点数据
int flag[4 * N]; //用于标记某个节点是否存在,1表示存在,-1表示不存在
}kd;
//建树步骤,参数dept代表树的深度
void KDTree::Build(int l, int r, int rt, int dept)
{
if(l > r) return;
flag[rt] = 1; //表示编号为rt的节点存在
flag[lson] = flag[rson] = -1; //当前节点的孩子暂时标记不存在
idx = dept % k; //按照编号为idx的属性进行划分
int mid = (l + r) >> 1;
nth_element(_data + l, _data + mid, _data + r + 1); //nth_element()为STL中的函数
data[rt] = _data[mid];
Build(l, mid - 1, lson, dept + 1); //递归左子树
Build(mid + 1, r, rson, dept + 1); //递归右子树
}
//查询函数,寻找离p最近的m个特征属性
void KDTree::Query(Node p, int m, int rt, int dept)
{
if(flag[rt] == -1) return; //不存在的节点不遍历
Pair cur(0, data[rt]); //获取当前节点的数据和到p的距离
for(int i = 0; i < k; i++)
cur.first += Sqrt2(cur.second.feature[i] - p.feature[i]);
int dim = dept % k; //跟建树一样,这样能保证相同节点的dim值不变
bool fg = 0; //用于标记是否需要遍历右子树
int x = lson;
int y = rson;
if(p.feature[dim] >= data[rt].feature[dim]) //数据p的第dim个特征值大于等于当前的数据,则需要进入右子树
swap(x, y);
if(~flag[x]) Query(p, m, x, dept + 1); //如果节点x存在,则进入子树继续遍历
//以下是回溯过程,维护一个优先队列
if(Q.size() < m) //如果队列没有满,则继续放入
{
Q.push(cur);
fg = 1;
}
else
{
if(cur.first < Q.top().first) //如果找到更小的距离,则用于替换队列Q中最大的距离的数据
{
Q.pop();
Q.push(cur);
}
if(Sqrt2(p.feature[dim] - data[rt].feature[dim]) < Q.top().first)
{
fg = 1;
}
}
if(~flag[y] && fg)
Query(p, m, y, dept + 1);
}
//输出结果
void Print(Node data)
{
for(int i = 0; i < k; i++)
printf("%d%c", data.feature[i], i == k - 1 ? '\n' : ' ');
}
int main()
{
while(scanf("%d%d", &n, &k)!=EOF)
{
for(int i = 0; i < n; i++)
for(int j = 0; j < k; j++)
scanf("%d", &_data[i].feature[j]);
kd.Build(0, n - 1, 1, 0);
int t, m;
scanf("%d", &t);
while(t--)
{
Node p;
for(int i = 0; i < k; i++)
scanf("%d", &p.feature[i]);
scanf("%d", &m);
while(!Q.empty()) Q.pop(); //事先需要清空优先队列
kd.Query(p, m, 1, 0);
printf("the closest %d points are:\n", m);
Node tmp[25];
for(int i = 0; !Q.empty(); i++)
{
tmp[i] = Q.top().second;
Q.pop();
}
for(int i = m - 1; i >= 0; i--)
Print(tmp[i]);
}
}
return 0;
}
题目:http://acm.hdu.edu.cn/showproblem.php?pid=2966
题意:给定n个二维点,求每个点距离其它点的最近的距离。其中n <= 100000。
代码:
import java.util.Arrays;
import java.util.Scanner;
public class Main {
final static int SIZE = 100005;
final static double EPS = 1e-10;
private boolean[] d = null;
private Node[] p = null;
private long res;
private int index;
private int size;
public class Node{
private long[] x = null;
Node(){
x = new long[2];
}
}
Main(int size){
d = new boolean[size];
p = new Node[size];
for(int i = 0; i < size; i++)
p[i] = new Node();
}
public void setSize(int size){
this.size = size;
Arrays.fill(d, false);
}
public void clear(){
res = Long.MAX_VALUE;
index = 0;
}
public void Insert(int id, Node t){
p[id] = t;
}
public Node get(int id){
return p[id];
}
public void InsertSort(Node a[], int id, int l, int r){
for(int i = l + 1; i <= r; i++){
if(a[i - 1].x[id] > a[i].x[id]){
Node t = new Node();
t = a[i];
int j = i;
while(j > l && a[j - 1].x[id] > t.x[id])
{
a[j] = a[j - 1];
j--;
}
a[j] = t;
}
}
}
public Node FindMid(Node a[], int id, int l, int r)
{
if(l == r) return a[l];
int i = 0;
int n = 0;
for(i = l; i < r - 5; i += 5)
{
InsertSort(a, id, i, i + 4);
n = i - l;
Node t = new Node();
t = a[l + n / 5];
a[l + n / 5] = a[i + 2];
a[i + 2] = t;
}
int num = r - i + 1;
if(num > 0)
{
InsertSort(a, id, i, i + num - 1);
n = i - l;
Node t = new Node();
t = a[l + n / 5];
a[l + n / 5] = a[i + num / 2];
a[i + num / 2] = t;
}
n /= 5;
if(n == l) return a[l];
return FindMid(a, id, l, l + n);
}
public boolean Equals(Node a, Node b){
if(Math.abs(a.x[0] - b.x[0]) > EPS)
return false;
if(Math.abs(a.x[1] - b.x[1]) > EPS)
return false;
return true;
}
public int FindId(Node a[], int l, int r, Node num)
{
for(int i = l; i <= r; i++)
if(Equals(a[i], num))
return i;
return -1;
}
public int Partion(Node a[], int id, int l, int r, int p)
{
Node t = new Node();
t = a[p];
a[p] = a[l];
a[l] = t;
int i = l;
int j = r;
Node pivot = a[l];
while(i < j)
{
while(a[j].x[id] >= pivot.x[id] && i < j)
j--;
a[i] = a[j];
while(a[i].x[id] <= pivot.x[id] && i < j)
i++;
a[j] = a[i];
}
a[i] = pivot;
return i;
}
public Node BFPTR(Node a[], int id, int l, int r, int k)
{
if(l > r) return null;
Node num = FindMid(a, id, l, r);
int p = FindId(a, l, r, num);
int i = Partion(a, id, l, r, p);
int m = i - l + 1;
if(m == k) return a[i];
if(m > k) return BFPTR(a, id, l, i - 1, k);
return BFPTR(a, id, i + 1, r, k - m);
}
public Node getInterval(Node p[], int id, int l, int r){
Node t = new Node();
long max = Long.MIN_VALUE;
long min = Long.MAX_VALUE;
for(int i = l; i <= r; i++){
if(max < p[i].x[id]) max = p[i].x[id];
if(min > p[i].x[id]) min = p[i].x[id];
}
t.x[0] = min;
t.x[1] = max;
return t;
}
public long getDist(Node a, Node b){
return (a.x[0] - b.x[0]) * (a.x[0] - b.x[0]) + (a.x[1] - b.x[1]) * (a.x[1] - b.x[1]);
}
public void Build(Node p[], int l, int r){
if(l > r) return;
Node t1 = getInterval(p, 0, l, r);
long minx = t1.x[0];
long maxx = t1.x[1];
Node t2 = getInterval(p, 1, l, r);
long miny = t2.x[0];
long maxy = t2.x[1];
int mid = (l + r) >> 1;
d[mid] = (maxx - minx > maxy - miny);
BFPTR(p, d[mid] ? 0 : 1, l, r, mid - l + 1);
Build(p, l, mid - 1);
Build(p, mid + 1, r);
}
public void Find(Node p[], Node t, int l, int r){
if(l > r) return;
int mid = (l + r) >> 1;
long dist = getDist(p[mid], t);
long df = d[mid] ? (t.x[0] - p[mid].x[0]) : (t.x[1] - p[mid].x[1]);
if(dist > 0 && dist < res){
res = dist;
index = mid;
}
int l1 = l;
int r1 = mid - 1;
int l2 = mid + 1;
int r2 = r;
if (df > 0){
l1 ^= l2;
l2 ^= l1;
l1 ^= l2;
r1 ^= r2;
r2 ^= r1;
r1 ^= r2;
}
Find(p, t, l1, r1);
if (df * df < res) Find(p, t, l2, r2);
}
public void Build(){
Build(p, 0, size - 1);
}
public int Search(Node t){
clear();
Find(p, t, 0, size - 1);
return index;
}
public static void main(String[] args){
Scanner cin = new Scanner(System.in);
int t = cin.nextInt();
Main kd = new Main(SIZE);
Node[] node = new Node[SIZE];
for(int i = 0; i < SIZE; i++){
node[i] = kd.new Node();
}
while(t-- > 0){
int n = cin.nextInt();
kd.setSize(n);
for(int i = 0; i < n; i++){
node[i].x[0] = cin.nextLong();
node[i].x[1] = cin.nextLong();
kd.Insert(i, node[i]);
}
kd.Build();
for(int i = 0; i < n; i++){
int id = kd.Search(node[i]);
System.out.println(kd.getDist(kd.get(id), node[i]));
}
}
}
}
4. K-D树的开源框架介绍
K-D树的一个比较好的C++框架可以。下载后,可以参考里面的examples文件夹中的代码学习使用。