发个MatLab 自编的 均值滤波、中值滤波、高斯滤波 图像处理函数
虽然matlab里面有这些函数,但是攀立民老师要求自己编写,计算机视觉上有这个实验,到网上找了半天才零散的找到一些碎片,还是整理以后发上来吧!
MatLab自编的均值滤波、中值滤波、高斯滤波 图像处理函数。
%自编的均值滤波函数。x是需要滤波的图像,n是模板大小(即n×n)
function d=avefilt(x,n)
a(1:n,1:n)=1; %a即n×n模板,元素全是1
p=size(x); %输入图像是p×q的,且p>n,q>n
x1=double(x);
x2=x1;
%A(a:b,c:d)表示A矩阵的第a到b行,第c到d列的所有元素
for i=1:p(1)-n+1
for j=1:p(2)-n+1
c=x1(i:i+(n-1),j:j+(n-1)).*a; %取出x1中从(i,j)开始的n行n列元素与模板相乘
s=sum(sum(c)); %求c矩阵(即模板)中各元素之和
x2(i+(n-1)/2,j+(n-1)/2)=s/(n*n); %将模板各元素的均值赋给模板中心位置的元素
end
end
%未被赋值的元素取原值
d=uint8(x2);
%自编的中值滤波函数。x是需要滤波的图像,n是模板大小(即n×n)
function d=midfilt(x,n)
p=size(x); %输入图像是p×q的,且p>n,q>n
x1=double(x);
x2=x1;
for i=1:p(1)-n+1
for j=1:p(2)-n+1
c=x1(i:i+(n-1),j:j+(n-1)); %取出x1中从(i,j)开始的n行n列元素,即模板(n×n的)
e=c(1,:); %是c矩阵的第一行
for u=2:n
e=[e,c(u,:)]; %将c矩阵变为一个行矩阵
end
mm=median(e); %mm是中值
x2(i+(n-1)/2,j+(n-1)/2)=mm; %将模板各元素的中值赋给模板中心位置的元素
end
end
%未被赋值的元素取原值
d=uint8(x2);
%自编的高斯滤波函数,S是需要滤波的图象,n是均值,k是方差
function d=gaussfilt(k,n,s)
Img = double(s);
n1=floor((n+1)/2);%计算图象中心
for i=1:n
for j=1:n
b(i,j) =exp(-((i-n1)^2+(j-n1)^2)/(4*k))/(4*pi*k);
end
end
%生成高斯序列b。
Img1=conv2(Img,b,'same'); %用生成的高斯序列卷积运算,进行高斯滤波
d=uint8(Img1);
%此为程序主文件,包含主要功能单元,以及对子函数进行调用
try
%实验步骤一:彩色、灰度变换
h=imread('photo.jpg'); %读入彩色图片
c=rgb2gray(h); %把彩色图片转化成灰度图片,256级
figure,imshow(c),title('原始图象'); %显示原始图象
g=imnoise(c,'gaussian',0.1,0.002); %加入高斯噪声
figure,imshow(g),title('加入高斯噪声之后的图象'); %显示加入高斯噪声之后的图象
%实验步骤二:用系统预定义滤波器进行均值滤波
n=input('请输入均值滤波器模板大小/n');
A=fspecial('average',n); %生成系统预定义的3X3滤波器
Y=filter2(A,g)/255; %用生成的滤波器进行滤波,并归一化
figure,imshow(Y),title('用系统函数进行均值滤波后的结果'); %显示滤波后的图象
%实验步骤三:用自己的编写的函数进行均值滤波
Y2=avefilt(g,n); %调用自编函数进行均值滤波,n为模板大小
figure,imshow(Y2),title('用自己的编写的函数进行均值滤波之后的结果'); %显示滤波后的图象
%实验步骤四:用Matlab系统函数进行中值滤波
n2=input('请输入中值滤波的模板的大小/n');
Y3=medfilt2(g,[n2 n2]); %调用系统函数进行中值滤波,n2为模板大小
figure,imshow(Y3),title('用Matlab系统函数进行中值滤波之后的结果'); %显示滤波后的图象
%实验步骤五:用自己的编写的函数进行中值滤波
Y4=midfilt(g,n2); %调用自己编写的函数进行中值滤波,
figure,imshow(Y4),title('用自己编写的函数进行中值滤波之后的结果');
%实验步骤六:用matlab系统函数进行高斯滤波
n3=input('请输入高斯滤波器的均值/n');
k=input('请输入高斯滤波器的方差/n');
A2=fspecial('gaussian',k,n3); %生成高斯序列
Y5=filter2(A2,g)/255; %用生成的高斯序列进行滤波
figure,imshow(Y5),title('用Matlab函数进行高斯滤波之后的结果'); %显示滤波后的图象
%实验步骤七:用自己编写的函数进行高斯滤波
Y6=gaussfilt(n3,k,g); %调用自己编写的函数进行高斯滤波,n3为均值,k为方差
figure,imshow(Y6),title('用自编函数进行高斯滤波之后的结果'); %显示滤波后的图象
catch %捕获异常
disp(lasterr); %如果程序有异常,输出
end