处理的方法架构:


前 DL 时代的语义分割工作多是根据图像像素自身的低阶视觉信息(Low-level visual cues)来进行图像分割。由于这样的方法没有算法训练阶段,因此往往计算复杂度不高,但是在较困难的分割任务上(如果不提供人为的辅助信息),其分割效果并不能令人满意。

在计算机视觉步入深度学习时代之后,语义分割同样也进入了全新的发展阶段,以全卷积神经网络(Fully convolutional networks,FCN)为代表的一系列基于卷积神经网络「训练」的语义分割方法相继提出,屡屡刷新图像语义分割精度。下面就介绍三种在 DL时代语义分割领域的代表性做法。

2.2.1全卷积神经网络[3]

全卷积神经网络 FCN 可以说是深度学习在图像语义分割任务上的开创性工作,出自 UC Berkeley 的 Trevor Darrell 组,发表于计算机视觉领域顶级会议 CVPR 2015,并荣获best paper honorable mention。

FCN 的思想很直观,即直接进行像素级别端到端(end-to-end)的语义分割,它可以基于主流的深度卷积神经网络模型(CNN)来实现。正所谓‘全卷积神经网络‘,在FCN中,传统的全连接层 fc6 和 fc7 均是由卷积层实现,而最后的 fc8 层则被替代为一个 21 通道(channel)的 1x1 卷积层,作为网络的最终输出。之所以有 21 个通道是因为 PASCAL VOC 的数据中包含 21 个类别(20个object类别和一个「background」类别)。下图为 FCN 的网络结构,若原图为 H×W×3,在经过若干堆叠的卷积和池化层操作后可以得到原图对应的响应张量(Activation tensor)

图像语义分割数据集 图像语义分割技术_语

,其中,图像语义分割数据集 图像语义分割技术_卷积核_02 为 i 第 层的通道数。可以发现,由于池化层的下采样作用,使得响应张量的长和宽远小于原图的长和宽,这便给像素级别的直接训练带来问题。


为了解决下采样带来的问题,FCN 利用双线性插值将响应张亮的长宽上采样到原图大小,另外为了更好的预测图像中的细节部分,FCN 还将网络中浅层的响应也考虑进来。具体来说,就是将 Pool4 和 Pool3 的响应也拿来,分别作为模型 FCN-16s 和 FCN-8s 的输出,与原来 FCN-32s 的输出结合在一起做最终的语义分割预测(如下图所示)。


图像语义分割数据集 图像语义分割技术_图像语义分割数据集_03

图像语义分割数据集 图像语义分割技术_语_04

下图是不同层作为输出的语义分割结果,可以明显看出,由于池化层的下采样倍数的不同导致不同的语义分割精细程度。如 FCN-32s,由于是 FCN 的最后一层卷积和池化的输出,该模型的下采样倍数最高,其对应的语义分割结果最为粗略;而 FCN-8s 则因下采样倍数较小可以取得较为精细的分割结果。

图像语义分割数据集 图像语义分割技术_池化_05

2.2.2Dilated Convolutions [4]

FCN 的一个不足之处在于,由于池化层的存在,响应张量的大小(长和宽)越来越小,但是FCN的设计初衷则需要和输入大小一致的输出,因此 FCN 做了上采样。但是上采样并不能将丢失的信息全部无损地找回来。

对此,dilated convolution 是一种很好的解决方案——既然池化的下采样操作会带来信息损失,那么就把池化层去掉。但是池化层去掉随之带来的是网络各层的感受野(Receptive field)变小,这样会降低整个模型的预测精度。Dilated convolution 的主要贡献就是,如何在去掉池化下采样操作的同时,而不降低网络的感受野。

以 3×3 的卷积核为例,传统卷积核在做卷积操作时,是将卷积核与输入张量中「连续」的 3×3 的 patch 逐点相乘再求和(如下图a,红色圆点为卷积核对应的输入「像素」,绿色为其在原输入中的感知野)。而 dilated convolution 中的卷积核则是将输入张量的 3×3 patch 隔一定的像素进行卷积运算。如下图 b 所示,在去掉一层池化层后,需要在去掉的池化层后将传统卷积层换做一个「dilation=2」的 dilated convolution 层,此时卷积核将输入张量每隔一个「像素」的位置作为输入 patch 进行卷积计算,可以发现这时对应到原输入的感知野已经扩大(dilate)为 ;同理,如果再去掉一个池化层,就要将其之后的卷积层换成「dilation=4」的 dilated convolution 层,如图 c 所示。这样一来,即使去掉池化层也能保证网络的感受野,从而确保图像语义分割的精度。

图像语义分割数据集 图像语义分割技术_图像语义分割数据集_06

从下面的几个图像语义分割效果图可以看出,在使用了 dilated convolution 这一技术后可以大幅提高语义类别的辨识度以及分割细节的精细度。

图像语义分割数据集 图像语义分割技术_语_07

2.2.3以条件随机场为代表的后处理操作[5]

当下许多以深度学习为框架的图像语义分割工作都是用了条件随机场(Conditional random field,CRF)作为最后的后处理操作来对语义预测结果进行优化。

一般来讲,CRF 将图像中每个像素点所属的类别都看作一个变量

图像语义分割数据集 图像语义分割技术_语_08

,然后考虑任意两个变量之间的关系,建立一个完全图(如下图所示)。

图像语义分割数据集 图像语义分割技术_图像语义分割数据集_09

在全链接的 CRF 模型中,对应的能量函数为:

图像语义分割数据集 图像语义分割技术_卷积_10

其中

图像语义分割数据集 图像语义分割技术_卷积_11

是一元项,表示Xi像素对应的语义类别, 其类别可以由 FCN 或者其他语义分割模型的预测结果得到;而第二项为二元项,二元项可将像素之间的语义联系/关系考虑进去。例如,「天空」和「鸟」这样的像素在物理空间是相邻的概率,应该要比「天空」和「鱼」这样像素的相邻概率大。最后通过对 CRF 能量函数的优化求解,得到对 FCN 的图像语义预测结果进行优化,得到最终的语义分割结果。值得一提的是,已经有工作[5]将原本与深度模型训练割裂开的 CRF 过程嵌入到神经网络内部,即,将 FCN+CRF 的过程整合到一个端到端的系统中,这样做的好处是 CRF 最后预测结果的能量函数可以直接用来指导 FCN 模型参数的训练,而取得更好的图像语义分割结果。

图像语义分割数据集 图像语义分割技术_语_12

3展望

基于深度学习的图像语义分割技术虽然可以取得相比传统方法突飞猛进的分割效果,但是其对数据标注的要求过高:不仅需要海量图像数据,同时这些图像还需提供精确到像素级别的标记信息(Semantic labels)。因此,越来越多的研究者开始将注意力转移到弱监督(Weakly-supervised)条件下的图像语义分割问题上。在这类问题中,图像仅需提供图像级别标注(如,有「人」,有「车」,无「电视」)而不需要昂贵的像素级别信息即可取得与现有方法可比的语义分割精度。

另外,示例级别(Instance level)的图像语义分割问题也同样热门。该类问题不仅需要对不同语义物体进行图像分割,同时还要求对同一语义的不同个体进行分割(例如需要对图中出现的九把椅子的像素用不同颜色分别标示出来)

图像语义分割数据集 图像语义分割技术_图像语义分割数据集_13