前言
今天的世界充满了数据,图像是这些数据的重要组成部分。但是,在使用它们之前,必须对这些数字图像进行处理 - 分析和操作,以提高其质量或提取一些可以使用的信息。
常见的图像处理任务包括显示;
- 基本操作如裁剪,翻转,旋转等
- 图像分割,分类和特征提取
- 图像恢复;图像识别
Python是这些图像处理任务的绝佳选择,因为它作为一种科学编程语言日益普及,并且在其生态系统中免费提供许多最先进的图像处理工具。
本文着眼于10个最常用的Python库,用于图像处理任务。这些库提供了一种简单直观的方法来转换图像并理解底层数据。
【----帮助Python学习,以下所有学习资料文末免费领!----】
1.scikit-image
scikit-image是一个与NumPy数组一起使用的开源Python包。它实现了用于研究,教育和行业应用的算法和实用程序。它是一个相当简单直接的库,即使对那些不熟悉Python生态系统的人也是如此。代码质量高,经过同行评审,由一个活跃的志愿者社区编写。
资源
scikit-image文档丰富,有很多示例和实际使用方法。
用法
该包通过skimage导入,大多数功能可以在子模块中找到。
图像过滤:
使用match_template函数进行模板匹配:
你可以在gallery中找到更多的例子。
2.NumPy
NumPy是Python编程中的核心库之一,并为数组提供支持。图像本质上是包含数据点像素的标准NumPy数组。因此,通过使用基本的NumPy操作(如slicing,masking和fancy indexing),您可以修改图像的像素值。可以使用 skimage加载图像并使用 Matplotlib显示。
资源
NumPy的官方文档页面提供了完整的资源和文档列表。
用法
使用Numpy来mask图片:
3.SciPy
SciPy是Python的另一个核心科学模块(如NumPy),可用于基本的图像操作和处理任务。特别是,子模块 scipy.ndimage(在SciPy v1.1.0中)提供了在n维NumPy数组上运行的函数。该软件包目前包括线性和非线性滤波,二进制形态,B样条插值和对象测量等功能。
资源
有关scipy.ndimage包所提供的完整功能列表,请参阅文档。
用法
使用SciPy通过高斯滤波器进行模糊
4.PIL/Pillow
PIL(Python Imaging Library)是一个免费的Python编程语言库,它增加了对打开,操作和保存许多不同图像格式的支持。
然而,它的发展停滞不前,其最后一版发布于2009年。
幸运的是,Pillow是一个积极开发的PIL分支,它更易于安装,可在所有主流操作系统上运行,并支持Python 3。
该库包含基本图像处理功能,包括点操作,使用一组内置卷积内核进行过滤以及颜色空间转换。
资源
文档包含安装说明以及涵盖库的每个模块的示例。
用法
使用ImageFilter增强Pillow中的图像:
5.OpenCV-Python
OpenCV(Open Source Computer Vision Library)是计算机视觉应用中使用最广泛的库之一。OpenCV-Python是OpenCV的Python API。因为后台由C / C ++编写的代码组成,OpenCV-Python速度很快快,但它也很容易编码和部署(由于前端的Python包装器)。这使其成为执行计算密集型计算机视觉程序的绝佳选择。
资源
通过OpenCV2-Python-Guide可以很容易上手OpenCV-Python
用法
使用OpenCV-Python中的 Image Blending using Pyramids创建一个“Orapple”:
6.SimpleCV
SimpleCV是另一个用于构建计算机视觉应用程序的开源框架。它提供访问几个高性能计算机视觉库,如OpenCV,的接口,但无需了解位深度,文件格式,色彩空间等。它的学习曲线远小于OpenCV,并且(如其标语所示),“它令计算机视觉变得简单。”支持SimpleCV的一些观点是:
即使是初学者也可以编写简单的机器视觉测试
摄像机,视频文件,图像和视频流都可以互操作
资源
很容易按照官方文档的指导进行操作,并有大量的示例和用例可供遵循。
用法
7.Mahotas
Mahotas是另一个用于Python的计算机视觉和图像处理库。它包含传统的图像处理功能,如过滤和形态操作,以及用于特征计算的更现代的计算机视觉功能,包括兴趣点检测和局部描述符。
使用Python编写接口,适用于快速开发,但算法是用C ++实现的,并且针对速度进行了优化。Mahotas库运行快速,代码简约,依赖性小。阅读其官方文章以获得更多了解。
资源
文档包含安装说明,示例,甚至一些教程帮助您轻松开始使用Mahotas。
用法
Mahotas库依靠简单的代码来完成工作。例如,使用最少量的代码Finding Wally问题就可以很好地解决。解决Finding Wally问题:
8.SimpleITK
ITK(Insight Segmentation and Registration Toolkit)是一个“开源,跨平台系统,为开发人员提供了一套用于图像分析的广泛软件工具。
SimpleITK是一个基于ITK构建的简化层,旨在促进其在快速原型设计,交易以及解释语言方面的应用。”它也是一个图像分析工具包,具有大量组件,支持一般过滤操作,图像分割和配准。SimpleITK是用C ++编写的,但它可用包括Python在内的大量编程语言进行操作。
资源
有大量的Jupyter Notebook说明了SimpleITK在教育和研究活动中的应用。
Notebooks使用Python和R编程语言演示如何使用SimpleITK进行交互式图像分析。
用法
使用SimpleITK和Python创建可视化的严格CT / MR配准过程:
9.pgmagick
pgmagick是基于Python的GraphicsMagick库的包装器。GraphicsMagick图像处理系统,有时也被称为图像处理的瑞士军刀。其强大而高效的工具和库集合支持在超过88种主要格式(包括DPX,GIF,JPEG,JPEG-2000,PNG,PDF,PNM和TIFF)上读取,写入和操作图像。
资源
pgmagick的GitHub respository有安装说明和要求。还有一个详细的用户指南。
用法
图像缩放:
边缘提取:
10.Pycairo
Pycairo是Cairo图形库的一组Python绑定。Cairo是一个用于绘制矢量图形的2D图形库。矢量图形很有趣,因为它们在调整大小或变换时不会失去清晰度。Pycairo可以从Python调用Cairo命令。
资源
Pycairo GitHub respository是一个很好的资源,包含有关安装和使用的详细说明。还有一个入门指南,有一个关于Pycairo的简短教程。
用法
用Pycairo绘制线条,基本形状和径向渐变:
结论
这些是Python中一些有用且免费提供的图像处理库。有些是众所周知的,有些可能对你来说是新的。尝试一下它们以了解更多关于它们的信息!
最后给大家介绍一个完整的python学习路线,内容是从入门到进阶,既有思维导图,也有经典书籍,还有配套视频,给那些想学习python以及数据分析的小伙伴们一点帮助!
python、SQL等工具如何使用都是数据分析过程中需要用到的机巧。以及必备的硬技能!!