在上一节中都是采用一阶差分(导数),进行的边缘提取。 也可以采用二阶差分进行边缘提取,如Laplacian算子,高斯拉普拉斯(LoG)边缘检测, 高斯差分(DoG)边缘检测,Marr-Hidreth边缘检测。这些边缘提取算法详细介绍如下:
1. Laplacian算子
Laplacian算子采用二阶导数,其计算公式如下:(分别对x方向和y方向求二阶导数,并求和)
其对应的Laplacian算子如下:
其推导过程如下:
opencv中提供Laplacian()函数计算拉普拉斯运算,其对应参数如下:
dst =cv2.Laplacian(src, ddepth, ksize, scale, delta, borderType)
src: 输入图像对象矩阵,单通道或多通道
ddepth:输出图片的数据深度,注意此处最好设置为cv.CV_32F或cv.CV_64F
ksize: Laplacian核的尺寸,默认为1,采用上面3*3的卷积核
scale: 放大比例系数
delta: 平移系数
borderType: 边界填充类型
下面为使用代码及其对应效果:
#coding:utf-8import cv2
img_path= r"C:\Users\silence_cho\Desktop\Messi.jpg"img=cv2.imread(img_path)
img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst_img=cv2.Laplacian(img, cv2.CV_32F)
laplacian_edge=cv2.convertScaleAbs(dst_img) #取绝对值后,进行归一化
dst_img_gray=cv2.Laplacian(img_gray, cv2.CV_32F)
laplacian_edge_gray=cv2.convertScaleAbs(dst_img_gray) #取绝对值后,进行归一化
cv2.imshow("img", img)
cv2.imshow("laplacian_edge", laplacian_edge)
cv2.imshow("img_gray", img_gray)
cv2.imshow("laplacian_edge_gray", laplacian_edge_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.Laplacian()
Laplacina算子进行边缘提取后,可以采用不同的后处理方法,其代码和对应效果如下:
#coding:utf-8import cv2
import numpyasnp
img_path= r"C:\Users\silence_cho\Desktop\Messi.jpg"img=cv2.imread(img_path)
img_gray=cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
dst_img_gray=cv2.Laplacian(img_gray, cv2.CV_32F)
# 处理方式1
laplacian_edge=cv2.convertScaleAbs(dst_img_gray) #取绝对值后,进行归一化
# convertScaleAbs等同于下面几句:
# laplacian_edge=np.abs(laplacian_edge)
# laplacian_edge= laplacian_edge/np.max(laplacian_edge)
# laplacian_edge= laplacian_edge*255#进行归一化处理
# laplacian_edge=laplacian_edge.astype(np.uint8)
# 处理方式2
laplacian_edge2=np.copy(laplacian_edge)
# laplacian_edge2[laplacian_edge> 0] = 255laplacian_edge2[laplacian_edge> 255] = 255laplacian_edge2[laplacian_edge<= 0] = 0laplacian_edge2=laplacian_edge2.astype(np.uint8)
#先进行平滑处理
gaussian_img_gray= cv2.GaussianBlur(dst_img_gray, (3, 3), 1)
laplacian_edge3=cv2.convertScaleAbs(gaussian_img_gray) #取绝对值后,进行归一化
cv2.imshow("img_gray", img_gray)
cv2.imshow("laplacian_edge", laplacian_edge)
cv2.imshow("laplacian_edge2", laplacian_edge2)
cv2.imshow("laplacian_edge3", laplacian_edge3)
cv2.waitKey(0)
cv2.destroyAllWindows()
Laplacian进行不同后处理
2. 高斯拉普拉斯(LoG)边缘检测
拉普拉斯算子没有对图像做平滑处理,会对噪声产生明显的响应,所以一般先对图片进行高斯平滑处理,再采用拉普拉斯算子进行处理,但这样要进行两次卷积处理。高斯拉普拉斯(LoG)边缘检测,是将两者结合成一个卷积核,只进行一次卷积运算。
高斯拉普拉斯(LoG),指的是二维高斯函数的拉普拉斯变换,其推导公式如下:
下面为一个标准差为1,3*3的LoG卷积核示例:
用python实现高斯拉普拉斯LoG,代码及其对应效果如下:
#coding:utf-8import numpyasnpfromscipy import signal
import cv2
def createLoGKernel(sigma, size):
H, W=size
r, c= np.mgrid[0:H:1.0, 0:W:1.0]
r-= (H-1)/2c-= (W-1)/2sigma2= np.power(sigma, 2.0)
norm2= np.power(r, 2.0) + np.power(c, 2.0)
LoGKernel= (norm2/sigma2 -2)*np.exp(-norm2/(2*sigma2)) # 省略掉了常数系数 1\2πσ4
print(LoGKernel)returnLoGKernel
def LoG(image, sigma, size, _boundary='symm'):
LoGKernel=createLoGKernel(sigma, size)
edge= signal.convolve2d(image, LoGKernel, 'same', boundary=_boundary)returnedgeif __name__ == "__main__":
img_path= r"C:\Users\silence_cho\Desktop\Messi.jpg"img= cv2.imread(img_path, 0)
LoG_edge= LoG(img, 1, (11, 11))
LoG_edge[LoG_edge>255] = 255# LoG_edge[LoG_edge>255] = 0LoG_edge[LoG_edge<0] = 0LoG_edge=LoG_edge.astype(np.uint8)
LoG_edge1= LoG(img, 1, (37, 37))
LoG_edge1[LoG_edge1> 255] = 255LoG_edge1[LoG_edge1< 0] = 0LoG_edge1=LoG_edge1.astype(np.uint8)
LoG_edge2= LoG(img, 2, (11, 11))
LoG_edge2[LoG_edge2> 255] = 255LoG_edge2[LoG_edge2< 0] = 0LoG_edge2=LoG_edge2.astype(np.uint8)
cv2.imshow("img", img)
cv2.imshow("LoG_edge", LoG_edge)
cv2.imshow("LoG_edge1", LoG_edge1)
cv2.imshow("LoG_edge2", LoG_edge2)
cv2.waitKey(0)
cv2.destroyAllWindows()
高斯拉普拉斯LoG边缘检测
3. 高斯差分(DoG)边缘检测
高斯差分(Difference of Gaussian, DoG), 是高斯拉普拉斯(LoG)的一种近似,两者之间的关系推导如下:
高斯差分(Difference of Gaussian, DoG)边缘检测算法的步骤如下:
构建窗口大小为HxW,标准差为的DoG卷积核(H, W一般为奇数,且相等)
图像与两个高斯核卷积,卷积结果计算差分
边缘后处理
python代码实现DoG边缘提取算法, 代码和结果如下:
#coding:utf-8import cv2
import numpyasnpfromscipy import signal
# 二维高斯卷积核拆分为水平核垂直一维卷积核,分别进行卷积
def gaussConv(image, size, sigma):
H, W=size
# 先水平一维高斯核卷积
xr, xc= np.mgrid[0:1, 0:W]
xc=xc.astype(np.float32)
xc-= (W-1.0)/2.0xk= np.exp(-np.power(xc, 2.0)/(2*sigma*sigma))
image_xk= signal.convolve2d(image, xk, 'same', 'symm')
# 垂直一维高斯核卷积
yr, yc= np.mgrid[0:H, 0:1]
yr=yr.astype(np.float32)
yr-= (H-1.0)/2.0yk= np.exp(-np.power(yr, 2.0)/(2*sigma*sigma))
image_yk= signal.convolve2d(image_xk, yk, 'same','symm')
image_cnotallow= image_yk/(2*np.pi*np.power(sigma, 2.0))returnimage_conv
#直接采用二维高斯卷积核,进行卷积
def gaussConv2(image, size, sigma):
H, W=size
r, c= np.mgrid[0:H:1.0, 0:W:1.0]
c-= (W - 1.0) / 2.0r-= (H - 1.0) / 2.0sigma2= np.power(sigma, 2.0)
norm2= np.power(r, 2.0) + np.power(c, 2.0)
LoGKernel= (1 / (2*np.pi*sigma2)) * np.exp(-norm2 / (2 *sigma2))
image_cnotallow= signal.convolve2d(image, LoGKernel, 'same','symm')returnimage_conv
def DoG(image, size, sigma, k=1.1):
Is=gaussConv(image, size, sigma)
Isk= gaussConv(image, size, sigma*k)
# Is=gaussConv2(image, size, sigma)
# Isk= gaussConv2(image, size, sigma *k)
doG= Isk -Is
doG/= (np.power(sigma, 2.0)*(k-1))returndoGif __name__ == "__main__":
img_path= r"C:\Users\silence_cho\Desktop\Messi.jpg"img= cv2.imread(img_path, 0)
sigma= 1k= 1.1size= (7, 7)
DoG_edge=DoG(img, size, sigma, k)
DoG_edge[DoG_edge>255] = 255DoG_edge[DoG_edge<0] = 0DoG_edge= DoG_edge /np.max(DoG_edge)
DoG_edge= DoG_edge * 255DoG_edge=DoG_edge.astype(np.uint8)
cv2.imshow("img", img)
cv2.imshow("DoG_edge", DoG_edge)
cv2.waitKey(0)
cv2.destroyAllWindows()
高斯差分(DoG)边缘检测算法
4. Marri-Hildreth边缘检测算法
高斯拉普拉斯和高斯差分边缘检测,得到边缘后,只进行了简单的阈值处理,Marr-Hildreth则对其边缘进行了进一步的细化,使边缘更加精确细致,就像Canny对sobel算子的边缘细化一样。
Marr-Hildreth边缘检测可以细分为三步:
构建窗口大小为H*W的高斯拉普拉斯卷积核(LoG)或高斯差分卷积核(DoG)
图形矩阵与LoG核或DoG核卷积
在第二步得到的结果中,寻找过零点的位置,过零点的位置即为边缘位置
第三步可以这么理解,LoG核或DoG核卷积后表示的是二阶导数,二阶导数为0表示的是一阶导数的极值,而一阶导数为极值表示的是变化最剧烈的地方,因此对应到图像边缘提取中,二阶导数为0,表示该位置像素点变化最明显,即最有可能是边缘交接位置。
对于连续函数g(x), 如果g(x1)*g(x2) < 0,即 g(x1) 和g(x2) 异号,那么在x1,x2之间一定存在x 使得g(x)=0, 则x为g(x)的过零点。在图像中,Marr-Hildreth将像素点分为下面四种情况,分别判断其领域点之间是否异号:
python代码实现Marri-Hildreth边缘检测算法, 代码和结果如下所示:
#coding:utf-8import cv2
import numpyasnpfromscipy import signal
# 二维高斯卷积核拆分为水平核垂直一维卷积核,分别进行卷积
def gaussConv(image, size, sigma):
H, W=size
# 先水平一维高斯核卷积
xr, xc= np.mgrid[0:1, 0:W]
xc=xc.astype(np.float32)
xc-= (W-1.0)/2.0xk= np.exp(-np.power(xc, 2.0)/(2*sigma*sigma))
image_xk= signal.convolve2d(image, xk, 'same', 'symm')
# 垂直一维高斯核卷积
yr, yc= np.mgrid[0:H, 0:1]
yr=yr.astype(np.float32)
yr-= (H-1.0)/2.0yk= np.exp(-np.power(yr, 2.0)/(2*sigma*sigma))
image_yk= signal.convolve2d(image_xk, yk, 'same','symm')
image_cnotallow= image_yk/(2*np.pi*np.power(sigma, 2.0))returnimage_conv
def DoG(image, size, sigma, k=1.1):
Is=gaussConv(image, size, sigma)
Isk= gaussConv(image, size, sigma*k)
doG= Isk -Is
doG/= (np.power(sigma, 2.0)*(k-1))returndoG
def zero_cross_default(doG):
zero_cross=np.zeros(doG.shape, np.uint8);
rows, cols=doG.shapefor r in range(1, rows-1):for c in range(1, cols-1):if doG[r][c-1]*doG[r][c+1] < 0:
zero_cross[r][c]=255
continue
if doG[r-1][c] * doG[r+1][c] <0:
zero_cross[r][c]= 255
continue
if doG[r-1][c-1] * doG[r+1][c+1] <0:
zero_cross[r][c]= 255
continue
if doG[r-1][c+1] * doG[r+1][c-1] <0:
zero_cross[r][c]= 255
continue
returnzero_cross
def Marr_Hildreth(image, size, sigma, k=1.1):
doG=DoG(image, size, sigma, k)
zero_cross=zero_cross_default(doG)returnzero_crossif __name__ == "__main__":
img_path= r"C:\Users\silence_cho\Desktop\Messi.jpg"img= cv2.imread(img_path, 0)
k= 1.1marri_edge= Marr_Hildreth(img, (11, 11), 1, k)
marri_edge2= Marr_Hildreth(img, (11, 11), 2, k)
marri_edge3= Marr_Hildreth(img, (7, 7), 1, k)
cv2.imshow("img", img)
cv2.imshow("marri_edge", marri_edge)
cv2.imshow("marri_edge2", marri_edge2)
cv2.imshow("marri_edge3", marri_edge3)
cv2.waitKey(0)
cv2.destroyAllWindows()
Mari-Hildreth边缘检测算法