hive与impala相关

hive的orc格式详解

ORC(The Optimized Row Columnar),被设计用来给hive提供更高效的数据存储格式。和其它数据格式相比(parquest、text、rc),orc在读、写、处理数据上有着更优的表现。

ORC是一种文件结构,排列组织存储数据的一种结构,而非一种数据压缩格式,就像hbase索引数据用B+树形式来存储数据。

orc是列式存储结构,(关系型数据库大多用的是行式存储),由于列式数据数据库在扫描数据时候是按照一列一列来进行扫描的,所以在有大量数据而且有很多行的情况下,列式数据有着更好的扫描效率。列式存储也可以根据各行的数据类型进行特定的数据压缩格式。

1.文件结构

Doris与hive 对比 inceptor和hive的关系_hive

如上图所示,是一个orc文件的基本结构。

  • stripe:一个stripe由index data、row data、stripe data三个组成。
    orc文件里面的一个stripe包含了数行的数据。
    stripe大小默认是250M。stripe越大,读写的效率越高。
  • file footer:包含了orc文件的一些辅助信息。如每一个stripe有多少行,每一列数据的类型。而且还存了列级别的聚合运算结果(count、min、max、sum),所以orc文件在一定情况下做这些运算的时候并没有计算,而是从file footer里面直接读。
  • postscript:包含了orc文件压缩的一些参数。
  • stripe footer:stripe的一些元信息。
  • row data:存数据的部分。
  • index data:包含了每一列的最大值、最小值以及位置信息。index data是用来在查询数据时检测要查询的对象在不在当前stripe以便跳过。

值得注意的是:一个orc文件是一个独立完整不能被分割的文件,举个例子和textfile相比,假如有一个1280M的textfile被分为10个block,任何一个被分割的block都是一个纯文本都可以被直接读写。而一个1280M的orc文件,只能被一个map读写。

2.创建orc结构表

CREATE TABLE ... STORED AS ORC
ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT ORC

Doris与hive 对比 inceptor和hive的关系_hadoop_02


在index data中,针对上表中后面两个参数中的bloom filter

在计算机科学中,我们常常会碰到时间换空间或者空间换时间的情况,即为了达到某一个方面的最优而牺牲另一个方面。Bloom Filter在时间空间这两个因素之外又引入了另一个因素:错误率。在使用Bloom Filter判断一个元素是否属于某个集合时,会有一定的错误率。也就是说,有可能把不属于这个集合的元素误认为属于这个集合(False Positive),但不会把属于这个集合的元素误认为不属于这个集合(False Negative)。在增加了错误率这个因素之后,Bloom Filter通过允许少量的错误来节省大量的存储空间。

例:

create table Addresses (
  name string,
  street string,
  city string,
  state string,
  zip int
) stored as orc tblproperties ("orc.compress"="NONE");

3.应用场景

1.orc数据结构适合使用在给数据做聚合运算、表关联的一些场景。

2.在hive中对orc中的某个字段使用”=”过滤条件时,hive不会走mapreduce,而是用orc api根据上面的stripe使用api来查找。

Impala总结文档

1. Impala 基本介绍

impala 是 cloudera 提供的一款高效率的 sql 查询工具,提供实时的查询效果,官方测试性能比 hive 快 10 到 100 倍,其 sql 查询比 sparkSQL 还要更加快速,号称是当前大数据领域最快的查询 sql 工具,impala 是参照谷歌的新三篇论文(Caffeine–网络搜索引擎、Pregel–分布式图计算、Dremel–交互式分析工具)当中的 Dremel 实现而来,其中旧三篇论文分别是(BigTable,GFS,MapReduce)分别对应我们即将学的 HBase 和已经学过的 HDFS 以及 MapReduce。
impala 是基于 hive 并使用内存进行计算,兼顾数据仓库,具有实时,批处理,多并发等优点。

2. Impala 与 Hive 关系

impala 是基于 hive 的大数据分析查询引擎,直接使用 hive 的元数据库metadata,意味着 impala 元数据都存储在 hive 的 metastore 当中,并且 impala 兼容 hive 的绝大多数 sql 语法。所以需要安装 impala 的话,必须先安装 hive,保证hive 安装成功,并且还需要启动 hive 的 metastore 服务。

Hive 元数据包含用 Hive 创建的 database、table 等元信息。元数据存储在关系型数据库中,如 Derby、MySQL 等。客户端连接 metastore 服务,metastore 再去连接 MySQL 数据库来存取元数据。有了 metastore 服务,就可以有多个客户端同时连接,而且这些客户端不需

要知道 MySQL 数据库的用户名和密码,只需要连接 metastore 服务即可。nohup hive --service metastore >> ~/metastore.log 2>&1 &

Doris与hive 对比 inceptor和hive的关系_hive_03

Hive 适合于长时间的批处理查询分析,而 Impala 适合于实时交互式 SQL 查询。可以先使用 hive 进行数据转换处理,之后使用 Impala 在 Hive 处理后的结果数据集上进行快速的数据分析。

3. Impala 与 Hive 异同

Impala 与 Hive 都是构建在 Hadoop 之上的数据查询工具各有不同的侧重适应面,但从客户端使用来看 Impala 与 Hive 有很多的共同之处,如数据表元数据、ODBC/JDBC 驱动、SQL 语法、灵活的文件格式、存储资源池等。
但是 Impala 跟 Hive 最大的优化区别在于:没有使用 MapReduce 进行并行计算,虽然 MapReduce 是非常好的并行计算框架,但它更多的面向批处理模式,而不是面向交互式的 SQL 执行。与 MapReduce 相比,Impala 把整个查询分成一执行计划树,而不是一连串的 MapReduce 任务,在分发执行计划后,Impala 使用拉式获取数据的方式获取结果,把结果数据组成按执行树流式传递汇集,减少的了把中间结果写入磁盘的步骤,再从磁盘读取数据的开销。Impala 使用服务的方式避免每次执行查询都需要启动的开销,即相比 Hive 没了 MapReduce 启动时间.

Doris与hive 对比 inceptor和hive的关系_大数据_04

3.1. Impala 使用的优化技术

使用 LLVM 产生运行代码,针对特定查询生成特定代码,同时使用 Inline 的方式减少函数调用的开销,加快执行效率。(C++特性)充分利用可用的硬件指令(SSE4.2)。
更好的 IO 调度,Impala 知道数据块所在的磁盘位置能够更好的利用多磁盘的优势,同时 Impala 支持直接数据块读取和本地代码计算 checksum。
通过选择合适数据存储格式可以得到最好性能(Impala 支持多种存储格式)。最大使用内存,中间结果不写磁盘,及时通过网络以 stream 的方式传递。

3.2. 执行计划

Hive: 依赖于 MapReduce 执行框架 ,执行计划分成map->shuffle->reduce->map->shuffle->reduce…的模型。如果一个 Query 会 被编
译成多轮 MapReduce,则会有更多的写中间结果。由于 MapReduce 执行框架本身的特点,过多的中间过程会增加整个 Query 的执行时间。

Impala: 把执行计划表现为一棵完整的执行计划树,可以更自然地分发执行计划到各个 Impalad 执行查询,而不用像 Hive 那样把它组合成管道型的map->reduce 模式,以此保证 Impala 有更好的并发性和避免不必要的中间 sort 与shuffle。

3.3. 数据流

Hive: 采用推的方式,每一个计算节点计算完成后将数据主动推给后续节点。

Impala: 采用拉的方式,后续节点通过 getNext 主动向前面节点要数据,以此方式数据可以流式的返回给客户端,且只要有 1 条数据被处理完,就可以立即展现出来,而不用等到全部处理完成,更符合 SQL 交互式查询使用。

3.4. 内存使用

Hive: 在执行过程中如果内存放不下所有数据,则会使用外存,以保证 Query能顺序执行完。每一轮 MapReduce 结束,中间结果也会写入 HDFS 中,同样由于MapReduce 执行架构的特性,shuffle 过程也会有写本地磁盘的操作。
Impala: 在遇到内存放不下数据时,版本 1.0.1 是直接返回错误,而不会利用外存,以后版本应该会进行改进。这使用得 Impala 目前处理 Query 会受到一定的限制,最好还是与 Hive 配合使用。

3.5. 调度

Hive: 任务调度依赖于 Hadoop 的调度策略。
Impala: 调度由自己完成,目前只有一种调度器 simple-schedule,它会尽量满足数据的局部性,扫描数据的进程尽量靠近数据本身所在的物理机器。调度器目前还比较简单,在 SimpleScheduler::GetBackend 中可以看到,现在还没有考虑负载,网络 IO 状况等因素进行调度。但目前 Impala 已经有对执行过程的性能统计分析,应该以后版本会利用这些统计信息进行调度吧。

3.6. 容错

Hive: 依赖于 Hadoop 的容错能力。
Impala: 在查询过程中,没有容错逻辑,如果在执行过程中发生故障,则直接返回错误(这与 Impala 的设计有关,因为 Impala 定位于实时查询,一次查询失败, 再查一次就好了,再查一次的成本很低)。

3.7. 适用面

Hive: 复杂的批处理查询任务,数据转换任务。
Impala:实时数据分析,因为不支持 UDF,能处理的问题域有一定的限制,与 Hive 配合使用,对 Hive 的结果数据集进行实时分析。

4. Impala 架构

Impala 主要由 Impalad、 State Store、Catalogd 和 CLI 组成。

Doris与hive 对比 inceptor和hive的关系_hive_05

4.1. Impalad

Impalad: 与 DataNode 运行在同一节点上,由 Impalad 进程表示,它接收客户端的查询请求(接收查询请求的 Impalad 为 Coordinator,Coordinator 通过 JNI 调用 java前端解释 SQL 查询语句,生成查询计划树,再通过调度器把执行计划分发给具有相应数据的其它 Impalad 进行执行),读写数据,并行执行查询,并把结果通过网络流式的传送回给 Coordinator,由 Coordinator 返回给客户端。同时 Impalad 也与 State Store 保持连接,用于确定哪个 Impalad 是健康和可以接受新的工作。
在 Impalad 中启动三个 ThriftServer: beeswax_server(连接客户端),hs2_server(借用 Hive 元数据),be_server(Impalad 内部使用)和一个 ImpalaServer 服务。

4.2. Impala State Store

Impala State Store: 跟踪集群中的 Impalad 的健康状态及位置信息,由statestored 进程表示,它通过创建多个线程来处理 Impalad 的注册订阅和与各Impalad 保持心跳连接,各 Impalad 都会缓存一份 State Store 中的信息,当 State Store 离线后(Impalad 发现 State Store 处于离线时,会进入 recovery 模式,反复注册,当 State Store 重新加入集群后,自动恢复正常,更新缓存数据)因为 Impalad有 State Store 的缓存仍然可以工作,但会因为有些 Impalad 失效了,而已缓存数据无法更新,导致把执行计划分配给了失效的 Impalad,导致查询失败。

4.3. CLI

CLI: 提供给用户查询使用的命令行工具(Impala Shell 使用 python 实现),同时 Impala 还提供了 Hue,JDBC, ODBC 使用接口。

4.4. Catalogd

Catalogd:作为 metadata 访问网关,从 Hive Metastore 等外部 catalog 中获取元数据信息,放到 impala 自己的 catalog 结构中。impalad 执行 ddl 命令时通过catalogd 由其代为执行,该更新则由 statestored 广播。

5. Impala 查询处理过程

Impalad 分为 Java 前端与 C++处理后端,接受客户端连接的 Impalad 即作为这次查询的 Coordinator,Coordinator 通过 JNI 调用 Java 前端对用户的查询 SQL进行分析生成执行计划树。

Doris与hive 对比 inceptor和hive的关系_hadoop_06

Java 前端产生的执行计划树以 Thrift 数据格式返回给 C++后端(Coordinator)(执行计划分为多个阶段,每一个阶段叫做一个 PlanFragment,每一个 PlanFragment 在执行时可以由多个 Impalad 实例并行执行(有些 PlanFragment 只能由一个 Impalad 实例执行,如
聚合操作),整个执行计划为一执行计划树)。

Coordinator 根据执行计划,数据存储信息(Impala 通过 libhdfs 与 HDFS 进行交互。通过 hdfsGetHosts 方法获得文件数据块所在节点的位置信息),通过调度器(现在只有 simple-scheduler, 使用 round-robin 算法)Coordinator::Exec 对生成的执行计划树分配给相应的后端执行器 Impalad 执行(查询会使用 LLVM 进行代码生成,编译,执行),通过调用 GetNext()方法获取计算结果。
如果是 insert 语句,则将计算结果通过 libhdfs 写回 HDFS 当所有输入数据被消耗光,执行结束,之后注销此次查询服务。


6. impala不支持的

  • impala 2.x版本,不支持orc数据存储格式;impala3.x版本支持。
  • impala最适合的格式是parquet。
  • impala不支持窗口函数
  • impala不支持local data local inpath

7. impala的查询不支持的

  1. 基本的语法跟 hive 的查询语句大体一样
  2. Impala 不支持 CLUSTER BY, DISTRIBUTE BY, SORT BY;因为impala不走MapReduce
  3. Impala 中不支持分桶表。
  4. Impala 不支持 COLLECT_SET(col)和 explode(col)函数
  5. Impala 不支持开窗函数

Java通过JDBC连接Impala(Kerberos认证)

两种连接方式

说明

Hive Jdbc

比较方便一点,直接可以从maven远程仓库下载驱动,用hive的Jdbc驱动连接Impala

Impala Jdbc

Impala自身的Jdbc驱动,但是在maven的远程仓库中没有,需要在官网下载

一、Impala的JDBC驱动连接impala

1. 驱动下载
  • 连接Impala的JDBC驱动在Maven远程仓库中没有,需要到官网下载
  • 这个下载是需要先注册账号的哦!免费注册
  • 点击去官网下载:[https://www.cloudera.com/search.html?q=impala%20jdbc](https://www.cloudera.com/search.html?q=impala jdbc)
2. 导入Impala的JDBC包
  • 下载解压后,打开文件夹,里面有两个名字类似的文件夹,选择一个即可

Doris与hive 对比 inceptor和hive的关系_hive_07

  • 打开即可看到一个jar包,将其导入到我们的环境

    * 我这里是导入到了idea中

Doris与hive 对比 inceptor和hive的关系_hive_08

3. 导入Maven外部依赖
  • 这里只需要导入一个hadoop的就可以
<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.0.0</version>
        </dependency>
    </dependencies>
3. 主程序
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.security.UserGroupInformation;
import java.security.PrivilegedAction;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

/**
 *
 * @Description: 注: impala的JDBC驱动maven远程仓库中没有, 需要从别的地方下载: https://www.cloudera.com/search.html?q=impala%20jdbc
 */
public class IConnectImpalaKerberos {
    // Kerberos
    public static final String KRB5_CONF = "C:/Windows/krb5.ini";//linux中叫 krb5.conf,改后缀即可
    public static final String PRINCIPAL = "normtest@HADOOP.COM";
    public static final String KEYTAB = "C:/Windows/normtest.keytab";
    // impala jdbc url 参数可参考官方文档   https://docs.cloudera.com/documentation/other/connectors/impala-jdbc/latest/Cloudera-JDBC-Driver-for-Impala-Install-Guide.pdf
    public static String connectionUrl = "jdbc:impala://host:21050/;AuthMech=1;KrbRealm=HADOOP.COM;KrbHostFQDN=host;KrbServiceName=impala";

    // 从官网下载的jar包
    public static String jdbcDriverName = "com.cloudera.impala.jdbc.Driver";

    public static void main(String[] args) throws Exception {

        System.setProperty("java.security.krb5.conf", KRB5_CONF);
        Configuration conf = new Configuration();
        conf.set("hadoop.security.authentication", "Kerberos");
        UserGroupInformation.setConfiguration(conf);
        UserGroupInformation.loginUserFromKeytab(PRINCIPAL, KEYTAB);
        System.out.println(">> 1. Login from keytab " + KEYTAB + " Success");
        UserGroupInformation loginUser = UserGroupInformation.getLoginUser();
        int result = loginUser.doAs(new PrivilegedAction<Integer>() {
            @Override
            public Integer run() {
                int result = 0;
                //加载驱动
                try {
                    Class.forName(jdbcDriverName);
                } catch (ClassNotFoundException e) {
                    e.printStackTrace();
                }
                System.out.println(">> 2. jdbcDriver load Success");
                try (Connection con = DriverManager.getConnection(connectionUrl)) {
                    System.out.println(">> 3. Login impala Sussecs");
                    Statement stmt = con.createStatement();
                    ResultSet rs = stmt.executeQuery("SELECT count(1) FROM norm_demo");
                    while (rs.next()) {
                        result = rs.getInt(1);
                    }
                    stmt.close();
                    con.close();
                } catch (Exception e) {
                    e.printStackTrace();
                }
                return result;
            }
        });
        System.out.println("表行数: "+ result);
    }

}

4. demo2
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

public class TestImpala {
    public static void test(){
        Connection con = null;
        ResultSet rs = null;
        PreparedStatement ps = null;
        String JDBC_DRIVER = "com.cloudera.impala.jdbc41.Driver";
        String CONNECTION_URL = "jdbc:impala://192.168.191.119:21050";

        try
        {
            Class.forName(JDBC_DRIVER);
            con = (Connection) DriverManager.getConnection(CONNECTION_URL);
            ps = con.prepareStatement("SELECT * FROM dwd_payment_info");
            rs = ps.executeQuery();
            while (rs.next())
            {
                System.out.println(rs.getString(1));
                System.out.println(rs.getString(2));
                System.out.println(rs.getString(3));
            }
        } catch (Exception e)
        {
            e.printStackTrace();
        } finally
        {
            try {
                rs.close();
                ps.close();
                con.close();
            } catch (SQLException e) {
                e.printStackTrace();
            }
        }
    }
    public static void main(String[] args) {
        test();
    }
}
  • 把impala的jdbc驱动放到lib包
  • [外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-wGE5KRTc-1666712421186)(C:\Users\Ford\AppData\Roaming\Typora\typora-user-images\image-20221025230052853.png)]

二、Hive的JDBC驱动连接impala

1. 导入Maven外部依赖
<dependencies>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>3.0.0</version>
        </dependency>
        <dependency>
            <groupId>org.apache.hive</groupId>
            <artifactId>hive-jdbc</artifactId>
            <version>1.2.1</version>
        </dependency>
    </dependencies>
2. 主程序
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.security.UserGroupInformation;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.Statement;

public class HConnectImpalaKerberos {
    // Kerberos
    public static final String KRB5_CONF = "C:/Windows/krb5.ini"; //linux中krb5.conf
    public static final String PRINCIPAL = "normtest@HADOOP.COM";
    public static final String KEYTAB = "C:/Windows/normtest.keytab";
    public static String connectionUrl = "jdbc:hive2://host:21050/;principal=impala/host@HADOOP.COM";
    public static String jdbcDriverName = "org.apache.hive.jdbc.HiveDriver";

    public static void main(String[] args) throws Exception {
        System.setProperty("java.security.krb5.conf", KRB5_CONF);
        Configuration conf = new Configuration();
        conf.set("hadoop.security.authentication", "Kerberos");
        UserGroupInformation.setConfiguration(conf);
        UserGroupInformation.loginUserFromKeytab(PRINCIPAL, KEYTAB);
        System.out.println(">> 1. Login from keytab " + KEYTAB + " Success");

        //加载驱动
        Class.forName(jdbcDriverName);
        System.out.println(">> 2. jdbcDriver load Success");
        try (Connection con = DriverManager.getConnection(connectionUrl)) {
            System.out.println(">> 3. Login impala Sussecs");
            Statement stmt = con.createStatement();
            ResultSet rs = stmt.executeQuery("SELECT count(1) FROM norm_demo");
            while (rs.next()) {
                System.out.println(rs.getInt(1));
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

}

impala优化

1、 尽量将 StateStore 和 Catalog 单独部署到同一个节点,保证他们正常通行。
2、 通过对 Impala Daemon 内存限制(默认 256M)及 StateStore 工作线程数,来提高Impala 的执行效率。
3、 SQL 优化,使用之前调用执行计划
4、 选择合适的文件格式进行存储,提高查询效率。

5、 避免产生很多小文件(如果有其他程序产生的小文件,可以使用中间表,将小文件数据存放到中间表。然后通过 insert…select…方式中间表的数据插入到最终表中)。
6、 使用合适的分区技术,根据分区粒度测算
7、 使用 compute stats 进行表信息搜集,当一个内容表或分区明显变化,重新计算统计相关数据表或分区。因为行和不同值的数量差异可能导致 impala 选择不同的连接顺序时,表中使用的查询。

[hadoop104:21000] > compute stats student;
Query: compute stats student
+-----------------------------------------+
| summary |
+-----------------------------------------+
| Updated 1 partition(s) and 2 column(s). |
+-----------------------------------------+

8、 网络 io 的优化:

  • a.避免把整个数据发送到客户端
  • b.尽可能的做条件过滤
  • c.使用 limit 字句
  • d.输出文件时,避免使用美化输出
  • e.尽量少用全量元数据的刷新

9、 使用 profile 输出底层信息计划,在做相应环境优化