神、上帝以及老天爷

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 47796    Accepted Submission(s): 19402


Problem Description

HDU 2006'10 ACM contest的颁奖晚会隆重开始了!
为了活跃气氛,组织者举行了一个别开生面、奖品丰厚的抽奖活动,这个活动的具体要求是这样的:

首先,所有参加晚会的人员都将一张写有自己名字的字条放入抽奖箱中;
然后,待所有字条加入完毕,每人从箱中取一个字条;
最后,如果取得的字条上写的就是自己的名字,那么“恭喜你,中奖了!”

大家可以想象一下当时的气氛之热烈,毕竟中奖者的奖品是大家梦寐以求的Twins签名照呀!不过,正如所有试图设计的喜剧往往以悲剧结尾,这次抽奖活动最后竟然没有一个人中奖!

我的神、上帝以及老天爷呀,怎么会这样呢?

不过,先不要激动,现在问题来了,你能计算一下发生这种情况的概率吗?

不会算?难道你也想以悲剧结尾?!

 


Input

输入数据的第一行是一个整数C,表示测试实例的个数,然后是C 行数据,每行包含一个整数n(1<n<=20),表示参加抽奖的人数。

 


Output

对于每个测试实例,请输出发生这种情况的百分比,每个实例的输出占一行, 结果保留两位小数(四舍五入),具体格式请参照sample output。

 


Sample Input


1 2

Sample Output


50.00%

import java.util.Scanner;
public class P2048 {
public static void main(String[] args) {
//打表
double a[]=new double[50];
a[1]=0;
a[2]=1;
for(int i=3;i<50;i++){
a[i]=(i-1)*(a[i-1]+a[i-2]);
}
Scanner sc=new Scanner(System.in);
while(sc.hasNext()){
int c=sc.nextInt();
while(c-->0){
int n=sc.nextInt();
double sum=1;
for(int i=1;i<=n;i++){
sum=sum*i;
}
System.out.printf("%.2f",a[n]/sum*100);
System.out.print("%");
System.out.println();
}
}
}
}

错位排列:

第一步,错排第一号元素(将第一号元素排在k位置),有n-1种方法。

第二步,错排其余n-1个元素。紧接第一步的结果,若第一号元素落在第k个位置,第二步就先把K排好

1、 k 号元素排在第1个位置,留下的 n - 2 个元素在与它们的编号集相等的位置集上“错排”,有 f(n -2) 种方法;
2、 k 号元素不排第 1 个位置,这时可将第 1 个位置“看成”第 k 个位置(也就是说本来准备放到k位置为元素,可以放到1位置中),于是形成(包括 k 号元素在内的) n - 1 个元素的“错排”,有 f(n - 1) 种方法。据加法原理,完成第二步共有 f(n - 2)+f(n - 1) 种方法。 
根据乘法原理, n 个不同元素的错排种数 
f(n) = (n-1)[f(n-2)+f(n-1)] (n>2) 。