It is easy to see that for every fraction in the form 1
k
(k > 0), we can always find two positive integers
x and y, x ≥ y, such that:
1
k
=
1
x
+
1
y
Now our question is: can you write a program that counts how many such pairs of x and y there
are for any given k?
Input
Input contains no more than 100 lines, each giving a value of k (0 < k ≤ 10000).
Output
For each k, output the number of corresponding (x, y) pairs, followed by a sorted list of the values of
x and y, as shown in the sample output.
Sample Input
2
12
Sample Output
2
1/2 = 1/6 + 1/3
1/2 = 1/4 + 1/4
8
1/12 = 1/156 + 1/13
1/12 = 1/84 + 1/14
1/12 = 1/60 + 1/15
1/12 = 1/48 + 1/16
1/12 = 1/36 + 1/18
1/12 = 1/30 + 1/20
1/12 = 1/28 + 1/21
1/12 = 1/24 + 1/24
暴力求解,通过枚举所有的y值来找出满足条件的x
由于x>=y,有1/x<=1/y,经化简可推出y<=2*k.
注意在保存x,y的数组,要开大一点。
第一次做的代码有些赘余:
经改进后: