文章目录

  • 两类基本计数原理
  • 分类加法计数原理
  • 分类乘法计数原理
  • 小结
  • 排列组合
  • 元素
  • 排列
  • 排列数
  • 全排列
  • 排列数性质
  • 从计数原理角度解释该公式
  • 从排列数展开公式推导
  • 组合
  • 组合数
  • 组合数与排列数的关系👺
  • 组合数的性质
  • 计数原理的方法证明
  • 纯代数方法证明
  • 排列数和组合数公式的逆用
  • 笔算或口算中的排列组合👺


两类基本计数原理

  • 以下两种计数原理是解决计数问题的最基本理论依据
  • 它们分别给出了"分类"和"分步"完成一件事(任务)的方法总数的计算方法

分类加法计数原理

  • 完成任务A有计数原理@排列数@组合数_组合数办法,第计数原理@排列数@组合数_排列组合_02类办法中有计数原理@排列数@组合数_全排列_03种不同的方法计数原理@排列数@组合数_全排列_04,那么完成A的方法数有计数原理@排列数@组合数_组合数_05

分类乘法计数原理

  • 完成任务B有n个步骤,第计数原理@排列数@组合数_排列组合_02个步骤有计数原理@排列数@组合数_全排列_03种不同的方法,则完成B的方法数有计数原理@排列数@组合数_全排列_08
  • 注意,乘法原理是各个步骤之间的顺序的,如果对调两个步骤仍能得到一样的效果,则该问题不是乘法原理能直接使用范围
  • 例如组合问题:设有计数原理@排列数@组合数_组合数_09三个球,从中取出2个球可以产生多少种可能?
  • 分步骤:第1步取第1个球,第2步取第2个球
  • 连乘:得到的结果是计数原理@排列数@组合数_全排列_10=6种
  • 枚举这些可能:
  • ab
  • ac
  • ba
  • bc
  • ca
  • cb
  • 容易发现,其中ab,ba是同一组合ac,ca是同一组合;bc,cb是同一组合
  • 后面将介绍如何间接地利用乘法原理来计算组合数

小结

  • 分类问题中,各类方法种的任意一种方法都可以把任务完成
  • 分步问题中,每个步骤的任何一种方法都不能把这件事完成,只有把所有步骤依次全部完成,才能算把任务完成
  • 在计数完成任务的方法总数时,所有方法必须完成任务的所有步骤,才算合格的方法能被计入总数(分类任务可以理解为步骤只有"一步"的的分步问题)

排列组合

  • 排列与组合都是基于乘法计数原理的经典计数模型
  • 从A,B,C球中任意取2个放入X,Y两个盒子中,这件事情有多少种做法?
  • 这个事情有两个步骤,:
  1. 取2个球
  2. 将2个球放入两个盒子
  • 还可以这样划分步骤:
  1. 先取一个球放入盒子X中
  2. 再取下一个球放入另一个盒子Y中
  • 上面两种步骤的划分方式不同在于:
  • 第1种两个步骤操作相差较大,将取球和放盒分开了
  • 第1步有3种可能(A,B),(A,C),(B,C)
  • 第2步,将2个选好的球放入2个盒子种有2种可能
  • 第2种两个步骤内容操作基本一样,都是取球并放盒
  • 第1步X盒中可能放入A,B,C中的一个,有3种可能
  • 第2步剩下2个球中取一个放入Y,有2种可能
  • 综上,有计数原理@排列数@组合数_排列组合_11
  • 这类问题,球的数量比盒子多,每个盒子都要放球,所以逐个地考虑盒子可以放入球的可能比逐个考虑球放入盒子的方式更合适

元素

  • 上例中"取球入盒"类型的问题,我们把被取的对象称为元素,放入的盒子抽象为位置(还可以理解为顺序)
  • 上例用元素抽象重新描述为:3个不同元素,任意取2个分别占据既有2个位置中的一个

排列

  • 计数原理@排列数@组合数_组合数个不同元素中任意取计数原理@排列数@组合数_组合数_13个元素,并按照一定的顺序成一列,称为从计数原理@排列数@组合数_组合数不同元素中取计数原理@排列数@组合数_组合数_15个元素的一个排列
  • 两个排列相同含义为:组成排列的元素相同,并且元素的排列顺序也相同
  • 一个排列对应完成一个事件的方法

排列数

  • 计数原理@排列数@组合数_组合数个不同元素中取出计数原理@排列数@组合数_组合数_13个元素的所有排列的个数,叫做从n个不同元素中取出计数原理@排列数@组合数_组合数_15个元素的排列数(排列个数的简称),通常用计数原理@排列数@组合数_全排列_19表示(A是英文Arrangement的首字母,有时也用计数原理@排列数@组合数_排列组合_20表示(P是Permutation的首字母))
  • 计数原理@排列数@组合数_全排列_21也可以表示完成某个事件有计数原理@排列数@组合数_组合数_15步骤,且第计数原理@排列数@组合数_排列组合_02个步骤有计数原理@排列数@组合数_排列组合_24种方式完成,则完成m个步骤的方法数可以表示为以下计数原理@排列数@组合数_组合数_15个数值的乘积
  • 计数原理@排列数@组合数_全排列_26
  • 计数原理@排列数@组合数_排列组合_27
  • 计数原理@排列数@组合数_排列组合_28
  • 计数原理@排列数@组合数_组合数_29
  • 计数原理@排列数@组合数_组合数_30=计数原理@排列数@组合数_排列组合_31

全排列

  • 从n个元素中取出n个元素(全部元素)构成的排列,称为这n个元素的全排列
  • 此时排列数公式中计数原理@排列数@组合数_全排列_32,计数原理@排列数@组合数_全排列_33

排列数性质

  • 计数原理@排列数@组合数_组合数_34
从计数原理角度解释该公式
  • 设原元素集A中有n个元素,编号为计数原理@排列数@组合数_全排列_35
  • 现在,为集合添加一个新的元素(第计数原理@排列数@组合数_排列组合_36个元素),得到元素集合B,显然计数原理@排列数@组合数_组合数_37,计数原理@排列数@组合数_排列组合_38
  • 从B中选出m个元素记为计数原理@排列数@组合数_全排列_39,其中包括两类
  • 取出的m个元素不包含第计数原理@排列数@组合数_全排列_40号元素,仅从A中选出计数原理@排列数@组合数_组合数_41个元素,共有计数原理@排列数@组合数_全排列_42种排列
  • 取出的m个元素包含第计数原理@排列数@组合数_全排列_40号元素,其余计数原理@排列数@组合数_组合数_44个元素来自于A,共有计数原理@排列数@组合数_全排列_45种排列法,考虑将第计数原理@排列数@组合数_全排列_40号元素放置在长度为计数原理@排列数@组合数_组合数_41的排列中有计数原理@排列数@组合数_组合数_41种可能,(或者元素插入到来自A的计数原理@排列数@组合数_组合数_44个元素有计数原理@排列数@组合数_排列组合_50种插法),因此这类情况会产生计数原理@排列数@组合数_组合数_51种排列;其他方法:先将所有元素取好,从而计数原理@排列数@组合数_全排列_52中取出计数原理@排列数@组合数_组合数_44个元素共有计数原理@排列数@组合数_组合数_54种取法;第计数原理@排列数@组合数_组合数_41个球只能是第计数原理@排列数@组合数_全排列_40号球,只有计数原理@排列数@组合数_组合数_57=计数原理@排列数@组合数_组合数_58种取法;将这计数原理@排列数@组合数_组合数_41个球做排列共有计数原理@排列数@组合数_排列组合_60种排列方法;从而有乘法原理,共有计数原理@排列数@组合数_组合数_61=计数原理@排列数@组合数_全排列_62=计数原理@排列数@组合数_组合数_51
  • 从而有等式计数原理@排列数@组合数_全排列_64成立
从排列数展开公式推导
  • 计数原理@排列数@组合数_组合数_65

组合

  • 计数原理@排列数@组合数_组合数个不同元素中任意取出计数原理@排列数@组合数_组合数_13个元素并成一组,称为从计数原理@排列数@组合数_组合数个不同元素中任取m个元素的一个组合
  • 组合不强调组合内元素的顺序,如果组合内的元素相同,即使元素间顺序有所不同,仍然视为同一个组
  • 排列可以看作是一种带有组内顺序的组合
  • 一个组合也是完成事情的一种方法

组合数

  • 计数原理@排列数@组合数_组合数个不同元素中任意取出计数原理@排列数@组合数_组合数_13个元素的所有可能的组合的个数,称为组合数("组合个数"的简称),用符号计数原理@排列数@组合数_全排列_71(Combination)或国际上更习惯用计数原理@排列数@组合数_全排列_72,(组合数和二项式系数(binomial coefficient有密切关系)

组合数与排列数的关系👺

  • 组合数不像排列数那样容易定义完成事件的m个步骤,比排列数要抽象许多
  • 但是我们根据组合数和排列数的定义,容易得到关于组合数和排列数的关系
  • 计数原理@排列数@组合数_组合数_73这个式子表示,从n个元素中抽取m个元素构成的排列数计数原理@排列数@组合数_全排列_74等于从计数原理@排列数@组合数_全排列_26个元素中抽取m个元素的组合数乘以各组内包含的长度为m的排列数计数原理@排列数@组合数_组合数_76;根据乘法计数原理可知,等式成立
  • 利用则个关系式,可以得到组合数的计算方法(公式)
  • 从n个不同元素中任取m个元素排列,可以分2步完成:
  • 选取元素:从n个不同元素中,任取m个元素的组合,有计数原理@排列数@组合数_组合数_77种方法
  • 排位置:对选中的m个元素进行全排列,有计数原理@排列数@组合数_排列组合_78种方法
  • 可见,计数原理@排列数@组合数_全排列_79=计数原理@排列数@组合数_组合数_80(0)
  • 计数原理@排列数@组合数_排列组合_81 (1)
  • 计数原理@排列数@组合数_全排列_82 (2)
  • 形式1中,分子分母各有计数原理@排列数@组合数_组合数_83
  • 形式2中,分子分母各有计数原理@排列数@组合数_组合数_41项,
  • 当m较小的时候,通常采用形式2进行笔算或口算,m较大时(或说计数原理@排列数@组合数_全排列_85较小),采用形式1计算
  • 在组合数性质中,我们将重新提及这个问题
  • 例如:计数原理@排列数@组合数_组合数_86;用形式1也可以算:计数原理@排列数@组合数_组合数_87=计数原理@排列数@组合数_组合数_88
  • 由形式0,当计数原理@排列数@组合数_全排列_89时,由于计数原理@排列数@组合数_排列组合_90,所以计数原理@排列数@组合数_全排列_91;当计数原理@排列数@组合数_组合数_92时,计数原理@排列数@组合数_排列组合_93,可见计数原理@排列数@组合数_组合数_94
  • 对于组合数计数原理@排列数@组合数_全排列_95,计数原理@排列数@组合数_全排列_96,计数原理@排列数@组合数_排列组合_97
  • 计数原理@排列数@组合数_全排列_98
  • 可见,组合数的展开算式分子和分母都有m项因子
  • 可通过对排列数进行去序来得到对应的组合数结果

组合数的性质

  1. 计数原理@排列数@组合数_组合数_99
  2. 计数原理@排列数@组合数_排列组合_100
  3. 计数原理@排列数@组合数_组合数_101
  4. 计数原理@排列数@组合数_组合数_102
计数原理的方法证明
  • (1):从n个不同元素取出m个的组合后剩余n-m个元素,这n-m个元素构成长度为n-m的组合,这相当于从n个不同元素取出计数原理@排列数@组合数_组合数_15个元素等价于从n个不同元素中保留计数原理@排列数@组合数_全排列_104个元素,所以计数原理@排列数@组合数_排列组合_105
  • (2):设原元素集A中有n个元素,编号为计数原理@排列数@组合数_全排列_35
  • 现在,为集合添加一个新的元素(第计数原理@排列数@组合数_全排列_40个元素),得到元素集合B,显然计数原理@排列数@组合数_组合数_108,计数原理@排列数@组合数_组合数_109
  • 从B中选出m个元素记为计数原理@排列数@组合数_全排列_110,其中包括两类
  • 取出的m个元素不包含第计数原理@排列数@组合数_全排列_111号元素,仅从A中选出计数原理@排列数@组合数_排列组合_112个元素,共有计数原理@排列数@组合数_排列组合_113种组合
  • 取出的m个元素包含第计数原理@排列数@组合数_全排列_111号元素,其余计数原理@排列数@组合数_组合数_115个元素来自于A,共有计数原理@排列数@组合数_排列组合_116中取法
  • Note:本组合数性质和排列数性质中的计数原理@排列数@组合数_全排列_64相似但不同,组合没有元素顺序之分,因此计数原理@排列数@组合数_排列组合_118没有乘以顺序系数计数原理@排列数@组合数_组合数_41
  • (3)使用二项式定理显然
  • (4)可以从概率论的角度证明,也可以构造两个集合:计数原理@排列数@组合数_全排列_120;计数原理@排列数@组合数_排列组合_121
  • 从中抽出计数原理@排列数@组合数_排列组合_122个的方法有计数原理@排列数@组合数_全排列_123个,可以分为计数原理@排列数@组合数_排列组合_124中分别取计数原理@排列数@组合数_组合数_125个:
  • 由乘法原理计数原理@排列数@组合数_排列组合_126
  • 再由加法原理:计数原理@排列数@组合数_排列组合_127
  • 所以计数原理@排列数@组合数_排列组合_128
纯代数方法证明
  1. 计数原理@排列数@组合数_排列组合_129
  2. 计数原理@排列数@组合数_组合数_130

排列数和组合数公式的逆用

推导某些排列组合公式时,从阶乘的分式化为排列数或组合数

  • 计数原理@排列数@组合数_排列组合_131=计数原理@排列数@组合数_组合数_132=计数原理@排列数@组合数_组合数_133
  • 计数原理@排列数@组合数_全排列_134=计数原理@排列数@组合数_排列组合_135
  • 例如:计数原理@排列数@组合数_全排列_136=计数原理@排列数@组合数_排列组合_137;计数原理@排列数@组合数_组合数_138=计数原理@排列数@组合数_全排列_139

笔算或口算中的排列组合👺

  • 计数原理@排列数@组合数_组合数_140不太大时的计算建议(通常计数原理@排列数@组合数_组合数_141)
  • 排列数:计数原理@排列数@组合数_全排列_142=计数原理@排列数@组合数_全排列_143,即有从n开始写,连写m项相乘即可
  • 例如计数原理@排列数@组合数_排列组合_144=计数原理@排列数@组合数_组合数_145,从6开始写,写两项即可
  • 容易发现,当计数原理@排列数@组合数_组合数_41比较大时公式展开的乘法链就比较长,计算计数原理@排列数@组合数_全排列_42的计算量就比较大,比如计数原理@排列数@组合数_排列组合_148
  • 组合数:计数原理@排列数@组合数_排列组合_135=计数原理@排列数@组合数_全排列_72=计数原理@排列数@组合数_排列组合_151=计数原理@排列数@组合数_组合数_152,即从n开始写,连写m项相乘作为分子,分母就是计数原理@排列数@组合数_组合数_153(从m开始写,写m项连乘)
  • 计数原理@排列数@组合数_组合数_41较大,而计数原理@排列数@组合数_组合数_83较小时,则考虑利用公式计数原理@排列数@组合数_排列组合_156=计数原理@排列数@组合数_组合数_157来计算
  • 例如计数原理@排列数@组合数_全排列_158=计数原理@排列数@组合数_组合数_159=计数原理@排列数@组合数_全排列_160=计数原理@排列数@组合数_组合数_161