题目:原题链接(中等)
标签:动态规划
解法 | 时间复杂度 | 空间复杂度 | 执行用时 |
Ans 1 (Python) | O ( M × N ) | O ( M × N ) | 456ms (26.86%) |
Ans 2 (Python) | |||
Ans 3 (Python) |
解法一:
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
s1, s2 = len(text1), len(text2)
dp = [[0] * (s2 + 1) for _ in range(s1 + 1)]
for i in range(1, s1 + 1):
for j in range(1, s2 + 1):
dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
if text1[i - 1] == text2[j - 1]:
dp[i][j] = max(dp[i][j], dp[i - 1][j - 1] + 1)
return dp[-1][-1]