题意:给定n个点(点标[0,n-1])m条有向边,起点和终点

问次短路的条数(一定存在次短路权值>最短路)


记录每个点的最短路,次短路的长度和方法数

则当更新最短路时就要把旧的最短路路径赋给次短路,剩下的状态转移还是比较明显的


而所有可转移的点中优先转移先更新最近的点。则如此更新有些类似bfs更新过就不再更新该点。


因为给出的图中所有边{u,v,dis},u<v ;

必然无环且有一定偏序关系,则必须先更新点标小的点。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <queue>
#include <set>
#include <vector>
using namespace std;

#define ll int
#define inf 100000000
#define N 55
struct Edge{
	int from, to, dis, nex;
}edge[N*N*2];
int head[N], edgenum ;
void add(int u, int v, int d){
	Edge E={u,v,d,head[u]};
	edge[edgenum] = E;
	head[u] = edgenum++;
}
int dis[N][2], dp[N][2];
int n, m, s, t;
bool inq[N][2];
struct node{
	int to, flag, dis;
	node(int a=0,int b=0,int c=0):to(a),flag(b),dis(c){}
	bool operator<(const node&a)const{
		if(a.dis==dis)return a.to<to;
		return a.dis<dis;
	}
};
void spfa(){
	int i, j;
	memset(dp, 0, sizeof(dp));
	memset(inq, 0, sizeof(inq));
	for(j=0;j<=n;j++)dis[j][0] = dis[j][1] = inf;
	priority_queue<node>q; q.push(node(s,0,0));
	dis[s][0] = 0; dp[s][0] = 1;
	while(!q.empty()){
		node u = q.top();  q.pop(); 
		if(inq[u.to][u.flag])continue;
		inq[u.to][u.flag] = 1;
		for(int i = head[u.to]; ~i; i = edge[i].nex){
			int v = edge[i].to;
			int nowd = u.dis+edge[i].dis;
			if(!inq[v][0] && nowd < dis[v][0])
			{
				if(dis[v][0]<inf)
				{
					dis[v][1] = dis[v][0];
					dp[v][1] = dp[v][0];
					q.push(node(v,1,dis[v][1]));
				}
				dis[v][0] = nowd;
				dp[v][0] = dp[u.to][u.flag];
				q.push(node(v,0,dis[v][0]));
			}
			else if(!inq[v][0] && nowd == dis[v][0])
			{
				dp[v][0] += dp[u.to][u.flag];
			}
			else if(!inq[v][1] && nowd < dis[v][1])
			{
				dis[v][1] = nowd;
				dp[v][1] = dp[u.to][u.flag];
				q.push(node(v,1,dis[v][1]));
			}
			else if(!inq[v][1] && nowd == dis[v][1])
			{
				dp[v][1] += dp[u.to][u.flag];
			}
		}
	}
}
void init(){memset(head, -1, sizeof(head));edgenum = 0;}
int main(){
	ll u, v, d;
	while(~scanf("%d %d %d %d",&n,&m,&s,&t)){
		init();
		while(m--){
			scanf("%d %d %d",&u,&v,&d);
			add(u,v,d);
		}
		spfa();
		printf("%d %d\n", dis[t][1], dp[t][1]);
	}
	return 0;
}
/*
3 3 0 2
0 2 5
0 1 4
1 2 2

8 28 0 7
0 1 1
0 2 2
0 3 3
0 4 4
0 5 5
0 6 6
0 7 6
1 2 1
1 3 2
1 4 3
1 5 4
1 6 5
1 7 6
2 3 1
2 4 2
2 5 3
2 6 4
2 7 5
3 4 1
3 5 2
3 6 3
3 7 4
4 5 1
4 6 2
4 7 3
5 6 1
5 7 2
6 7 1


5 6 0 4
0 1 1
0 2 1
2 1 0
1 3 0
1 4 1
3 4 0

6 8 0 4
0 1 1
0 2 1
2 1 0
1 3 0
1 4 1
3 4 0
2 5 0
5 1 0

*/