题意

首先判断所有的人可不可以分成两部分,每部分内的所有人都相互不认识。如果可以分成 则求两部分最多相互认识的对数。

解题

类似分成两组,同组互不相关,就可能使判断是否为二分图

能否分成两部分 则是判断是否是一个二分图。
无向图G为二分图的充分必要条件是:G至少有两个顶点,且当存在回路时,其所有回路的长度均为偶数。回路就是环路,也就是判断是否存在奇数环。
判断二分图方法:用染色法,把图中的点染成黑色和白色。
首先取一个点染成白色,然后将其相邻的点染成黑色,如果发现有相邻且同色的点,那么就退出,可知这个图并非二分图。

#include<stdio.h>
#include<string.h>
#include<queue>
#include<iostream>
using namespace std;
int map[205][205],vist[205],match[205],n;
int find(int i)
{
    for(int j=1;j<=n;j++)
    if(!vist[j]&&map[i][j])
    {
        vist[j]=1;
        if(match[j]==0||find(match[j]))
        {
            match[j]=i; return 1;
        }
    }
    return 0;
}
int isTwo()//判断是否为二分图
{
    queue<int>q;
    memset(vist,0,sizeof(vist));
        q.push(1); vist[1]=1;
        while(!q.empty())
        {
            int p=q.front(); q.pop();
            for(int j=1;j<=n;j++)
            if(map[p][j])
            {
                if(vist[j]==0)
                {
                    if(vist[p]==1)vist[j]=2;else vist[j]=1;
                    q.push(j);
                }
                else if(vist[j]==vist[p])
                    return 0;
            }
        }
    return 1;
}
int main()
{
    int m,a,b;
    while(scanf("%d%d",&n,&m)!=EOF)
    {
        memset(map,0,sizeof(map));
        while(m--)
        {
            scanf("%d%d",&a,&b);
            map[a][b]=map[b][a]=1;
        }
        if(!isTwo()||n==1)
        {
            printf("No\n"); continue;
        }
        memset(match,0,sizeof(match));
        int ans=0;
        for(int i=1;i<=n;i++)
        {
            memset(vist,0,sizeof(vist));
            ans+=find(i);
        }
        printf("%d\n",ans/2);//除2是因为对称,1认识2 与 2认识1 属同一情况
    }
}