Description
相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过一块同一种矿石,那么一定会发生“魔法抵消”。后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来为零。(如果你不清楚什么是异或,请参见下一页的名词解释。 )
例如,使用两个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起来为零。并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,并且通过实验推算出每一种矿石的元素序号。
现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多有多大的魔力。
Input
第一行包含一个正整数N,表示矿石的种类数。
接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号和魔力值。
Output
仅包一行,一个整数:最大的魔力值
Sample Input
1 10
2 20
3 30
Sample Output
HINT
由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。
对于全部的数据:N ≤ 1000,Numberi ≤ 10^18,Magici ≤ 10^4。
Solution
先把二元组按魔力值从大到小排序,然后依次往线性基里插入序号,如果插入成功的话将把这个魔法值统计到答案里。
贪心的策略为什么是对的……感性证明一下如果一个小的数没法被插入,那么就说明它和之前的冲突了,肯定得把之前的更大的取出来一些才能让这个更小的插入进去,这显然是不优的。
Code
1 #include<iostream> 2 #include<cstdio> 3 #include<algorithm> 4 #define N (1009) 5 #define LL long long 6 using namespace std; 7 8 LL n,x,y,ans,d[N]; 9 pair<LL,LL>p[N]; 10 11 bool Insert(LL x) 12 { 13 for (int i=63; i>=0; --i) 14 if (x&(1ll<<i)) 15 { 16 if (!d[i]) {d[i]=x; break;} 17 x^=d[i]; 18 } 19 return x>0; 20 } 21 22 int main() 23 { 24 scanf("%lld",&n); 25 for (int i=1; i<=n; ++i) 26 { 27 scanf("%lld%lld",&x,&y); 28 p[i]=make_pair(y,x); 29 } 30 sort(p+1,p+n+1); 31 for (int i=n; i>=1; --i) 32 if (Insert(p[i].second)) 33 ans+=p[i].first; 34 printf("%lld\n",ans); 35 }