一、获取代码方式

获取代码方式1:

完整代码已上传我的资源:​​【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】​


二、蚁狮优化算法简介

蚁狮算法是一种模仿自然界中蚁狮的捕猎机制的智能算法。蚁狮在沙子中,利用它的下颚挖出一个圆锥形的沙坑作为捕猎陷阱。一旦有猎物落陷阱,蚁狮便会将它拖入沙子底部并吃掉。通过与一些其他流行的智能算法比较,例如PSO、GA和杜鹃算法(CS),ALO显示出更好的收敛性、准确性和鲁棒性,但依然存在着收敛准确度低、易陷入局部最优解的缺陷。

(1)蚂蚁随机游走

首先假设由n个蚂蚁组成的蚂蚁种群Xant=(XA,1,XA,n,…,XA,N)T,XdA,n是第n个蚂蚁的第d个变量。蚂蚁移动的数学表达为

【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】_hive

式中,XA,n(t)为迭代t次时第n个蚂蚁的位置;cums m为累积和;tm a x为最大迭代次数。

为防止个体越限,对其进行标准化处理,即

【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】_算法_02

式中,min C(XdA,n)、max C(XdA,n)分别为第n只蚂蚁随机游走时的最小和最大步长;ud(t)、ld(t)分别为第t次迭代时第d个变量的上界和下界。

三、部分源代码

%_________________________________________________________________________%
% Multi-Objective Ant Lion Optimizer (MALO) source codes demo %
% version 1.0 %
% %
% %
%_________________________________________________________________________%

clc;
clear;
close all;

% Change these details with respect to your problem%%%%%%%%%%%%%%
ObjectiveFunction=@ZDT1;
dim=5;
lb=0;
ub=1;
obj_no=2;

if size(ub,2)==1
ub=ones(1,dim)*ub;
lb=ones(1,dim)*lb;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Initial parameters of the MODA algorithm
max_iter=100;
N=100;
ArchiveMaxSize=100;

Archive_X=zeros(100,dim);
Archive_F=ones(100,obj_no)*inf;

Archive_member_no=0;

r=(ub-lb)/2;
V_max=(ub(1)-lb(1))/10;

Elite_fitness=inf*ones(1,obj_no);
Elite_position=zeros(dim,1);

Ant_Position=initialization(N,dim,ub,lb);
fitness=zeros(N,2);

V=initialization(N,dim,ub,lb);
iter=0;

position_history=zeros(N,max_iter,dim);

for iter=1:max_iter

for i=1:N %Calculate all the objective values first
Particles_F(i,:)=ObjectiveFunction(Ant_Position(:,i)');
if dominates(Particles_F(i,:),Elite_fitness)
Elite_fitness=Particles_F(i,:);
Elite_position=Ant_Position(:,i);
end
end

[Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Ant_Position, Particles_F, Archive_member_no);

if Archive_member_no>ArchiveMaxSize
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
[Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);
else
Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);
end

Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);

% Chose the archive member in the least population area as arrtactor
% to improve coverage
index=RouletteWheelSelection(1./Archive_mem_ranks);
if index==-1
index=1;
end
Elite_fitness=Archive_F(index,:);
Elite_position=Archive_X(index,:)';

Random_antlion_fitness=Archive_F(1,:);
Random_antlion_position=Archive_X(1,:)';

for i=1:N

index=0;
neighbours_no=0;

RA=Random_walk_around_antlion(dim,max_iter,lb,ub, Random_antlion_position',iter);

[RE]=Random_walk_around_antlion(dim,max_iter,lb,ub, Elite_position',iter);

Ant_Position(:,i)=(RE(iter,:)'+RA(iter,:)')/2;



Flag4ub=Ant_Position(:,i)>ub';
Flag4lb=Ant_Position(:,i)<lb';
Ant_Position(:,i)=(Ant_Position(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;

end
display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']);
end

figure

Draw_ZDT1();

hold on

plot(Archive_F(:,1),Archive_F(:,2),'ko','MarkerSize',8,'markerfacecolor','k');

legend('True PF','Obtained PF');
title('MALO');

set(gcf, 'pos', [403 466 230 200])

四、运行结果

【优化算法】多目标蚁狮优化算法(MOALO)【含Matlab源码 1598期】_算法_03

五、matlab版本及参考文献

1 matlab版本

2014a

2 参考文献

[1] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例(第2版)[M].电子工业出版社,2016.

[2]张岩,吴水根.MATLAB优化算法源代码[M].清华大学出版社,2017.