Torch and Numpy
变量 (Variable)
激励函数
关系拟合(回归)
区分类型 (分类)
快速搭建法
批训练
加速神经网络训练
Optimizer优化器
卷积神经网络 CNN
卷积神经网络(RNN、LSTM)
RNN 循环神经网络 (分类)
RNN 循环神经网络 (回归)
自编码 (Autoencoder)
DQN 强化学习
生成对抗网络 (GAN)
为什么 Torch 是动态的
GPU 加速运算
过拟合 (Overfitting)
批标准化 (Batch Normalization)
目录
Torch 中提供了很多方便的途径, 同样是神经网络, 能快则快, 我们看看如何用更简单的方式搭建同样的回归神经网络.
我们先看看之前写神经网络时用到的步骤. 我们用 net1 代表这种方式搭建的神经网络.
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net1 = Net(1, 10, 1) # 这是我们用这种方式搭建的 net1
我们用 class
继承了一个 torch
中的神经网络结构, 然后对其进行了修改, 不过还有更快的一招, 用一句话就概括了上面所有的内容!
net2 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
我们再对比一下两者的结构:
print(net1)
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
print(net2)
"""
Sequential (
(0): Linear (1 -> 10)
(1): ReLU ()
(2): Linear (10 -> 1)
)
"""
我们会发现 net2
多显示了一些内容, 这是为什么呢? 原来他把激励函数也一同纳入进去了, 但是 net1
中, 激励函数实际上是在 forward()
功能中才被调用的. 这也就说明了, 相比 net2
, net1
的好处就是, 你可以根据你的个人需要更加个性化你自己的前向传播过程, 比如(RNN
). 不过如果你不需要七七八八的过程, 相信 net2
这种形式更适合你.
import torch
import torch.nn.functional as F
# replace following class code with an easy sequential network
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer
def forward(self, x):
x = F.relu(self.hidden(x)) # activation function for hidden layer
x = self.predict(x) # linear output
return x
net1 = Net(1, 10, 1)
# easy and fast way to build your network
net2 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
print(net1) # net1 architecture
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
print(net2) # net2 architecture
"""
Sequential (
(0): Linear (1 -> 10)
(1): ReLU ()
(2): Linear (10 -> 1)
)
"""