✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
⛄ 内容介绍
近年来,随着工业4.0的兴起,国内外制造业都在积极进行智能化的转型升级。 作为生产制造环节的搬运工———移动机器人,其在制造业中的重要程度与日俱增。 作为移动机器人关键技术之一的路径规划技术,其在很大程度上决定了机器人本身乃至整条生产线智能化的水平,引发了国内外专家的研究热潮。 机器人的路径规划是指在满足机器人工作条件的基础上,尽可能地找到一条从初始点到目标点的最短且能避开障碍、保证自身安全的路径。为此,针对路径规划问题,国内外专家及学者们提出了许多经典的算法,诸如A*算法、遗传算法、模拟退化算法、启发式搜索法、粒子群算法及蚁群算法等,它们都已应用于机器人的路径规划研究中,并取得了较好的成果。
室内环境栅格法建模步骤
1.栅格粒大小的选取
栅格的大小是个关键因素,栅格选的小,环境分辨率较大,环境信息存储量大,决策速度慢。
栅格选的大,环境分辨率较小,环境信息存储量小,决策速度快,但在密集障碍物环境中发现路径的能力较弱。
2.障碍物栅格确定
当机器人新进入一个环境时,它是不知道室内障碍物信息的,这就需要机器人能够遍历整个环境,检测障碍物的位置,并根据障碍物位置找到对应栅格地图中的序号值,并对相应的栅格值进行修改。自由栅格为不包含障碍物的栅格赋值为0,障碍物栅格为包含障碍物的栅格赋值为1.
3.未知环境的栅格地图的建立
通常把终点设置为一个不能到达的点,比如(-1,-1),同时机器人在寻路过程中遵循“下右上左”的原则,即机器人先向下行走,当机器人前方遇到障碍物时,机器人转向右走,遵循这样的规则,机器人最终可以搜索出所有的可行路径,并且机器人最终将返回起始点。
备注:在栅格地图上,有这么一条原则,障碍物的大小永远等于n个栅格的大小,不会出现半个栅格这样的情况。
目标函数设定
原理
基于学校优化的机器人路径规划算法是一种针对学校环境中机器人路径规划问题的算法。在学校环境中,机器人需要在给定的地图上找到最优的路径,以完成特定任务,如巡逻、送货等。下面是一种基本的基于学校优化的机器人路径规划算法:
- 地图建模:
- 将学校环境抽象为一个图形网络,其中每个节点代表一个地点,每条边代表两个地点之间的可行路径。
- 根据实际情况,可以给不同类型的地点(如教室、办公室、走廊等)分配不同的权重。
- 起点和终点确定:
确定机器人的起始位置和目标位置。
可以根据任务需求或者优化目标选择起点和终点。
路径搜索和评估:
使用搜索算法(如A*算法、Dijkstra算法等)在地图上搜索从起点到终点的最短路径。
在搜索过程中,考虑地点之间的距离、权重、可行性等因素来评估路径的好坏。
可以结合启发式函数来引导搜索算法更快地找到最优路径。
优化策略:
根据学校环境的特点和任务需求,设计相应的优化策略。
可以考虑减少路径长度、避免拥堵区域、优化行进效率等方面的优化。
路径更新和调整:
在机器人行进过程中,根据实时环境信息对路径进行更新和调整。
可以利用传感器数据、实时地图信息等来检测障碍物、拥堵情况等,并通过重新规划路径来避免或解决问题。
该算法可以根据学校环境的实际情况和任务需求进行调整和优化。同时,还可以结合其他技术和算法,如机器学习、深度学习等,以提高路径规划的效果和适应性。
⛄ 部分代码
function drawPath(path,G,flag)
%%%%
xGrid=size(G,2);
drawShanGe(G,flag)
hold on
set(gca,'XtickLabel','')
set(gca,'YtickLabel','')
L=size(path,1);
Sx=path(1,1)-0.5;
Sy=path(1,2)-0.5;
plot(Sx,Sy,'ro','MarkerSize',5,'LineWidth',5); % 起点
for i=1:L-1
plot([path(i,2) path(i+1,2)]-0.5,[path(i,1) path(i+1,1)]-0.5,'k-','LineWidth',1.5,'markersize',10)
hold on
end
Ex=path(end,1)-0.5;
Ey=path(end,2)-0.5;
plot(Ex,Ey,'gs','MarkerSize',5,'LineWidth',5); % 终点
⛄ 运行结果
⛄ 参考文献
[1] 张毅,刘杰.一种基于优化混合蚁群算法的机器人路径规划算法:CN201711121774.X[P].CN107917711A[2023-07-10].
[2] 吴宪祥,郭宝龙,王娟.基于粒子群三次样条优化的移动机器人路径规划算法[J].机器人, 2009, 31(6):5.DOI:10.3321/j.issn:1002-0446.2009.06.013.
[3] 崔鼎,郝南海,郭阳宽.基于RRT*改进的路径规划算法[J].机床与液压, 2020(9).