✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

布谷鸟搜索(Cuckoo Search, CS)算法是 2009 年 Xin-She Yang 与 Susash Deb 提出的一种新型的启发算法[61]。算法灵感来源于一些布谷鸟种属(Cuckoo Species)的专性寄生哺育(BroodParasitism)行为,即这些种群不会像绝大多数鸟类一样自己筑巢哺育后代,而是通常把蛋产于宿主鸟巢内,由宿主代养,这种行为被称为巢寄生。此类布谷鸟会观察宿主鸟所产的卵并对其进行模仿,按照宿主鸟卵的颜色形状来产卵,导致宿主鸟辨别出布谷鸟卵的几率微乎其微,布谷鸟卵混在宿主鸟卵中,孵化后由宿主鸟哺育并与宿主雏鸟争夺生存资源。然而,布谷鸟卵一旦被宿主鸟识破情况便不同,宿主将完全摧毁鸟巢或是仅仅将布谷鸟卵摧毁。因此布谷鸟在繁殖季会寻找孵化周期类似、雏鸟习性类似以及卵外观类似的宿主鸟。布谷鸟通常会趁宿主外出时将卵产于巢内,有时会将宿主卵推出巢后进行产卵,使布谷雏鸟独享生存资源,以提高生存几率。此外,布谷鸟等动物的觅食过程是也是一种有启发性的随机行为过程。所在位置确定移动的下一个目标点,所选取的数学模型决定移动方向。根据当前位置与到下一个位置的转移概率,它们会飞向或是走向搜索路径。鸟类的这种飞行行为,在很多研究中被证明为莱维飞行(Levy Flight)的典型特征

多目标布谷鸟(MOCS)优化算法附Matlab代码_sed

多目标布谷鸟(MOCS)优化算法附Matlab代码_搜索_02

多目标布谷鸟(MOCS)优化算法附Matlab代码_ide_03

⛄ 部分代码

%% Cuckoo Search (CS) algorithm by Xin-She Yang and Suash Deb     %

% Programmed by Xin-She Yang at Cambridge University              %

% Programming dates: Nov 2008 to June 2009                        %

% Last revised: Dec  2009   (simplified version for demo only)    %

% Multiobjective cuckoo search (MOCS) added in July 2012,         %

% Then, MOCS was updated in Sept 2015.                     Thanks %

% -----------------------------------------------------------------

%% References -- Citation Details:

%% 1) X.-S. Yang, S. Deb, Cuckoo search via Levy flights,

% in: Proc. of World Congress on Nature & Biologically Inspired

% Computing (NaBIC 2009), December 2009, India,

% IEEE Publications, USA,  pp. 210-214 (2009).

% http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.1594v1.pdf 

%% 2) X.-S. Yang, S. Deb, Engineering optimization by cuckoo search,

% Int. J. Mathematical Modelling and Numerical Optimisation, 

% Vol. 1, No. 4, 330-343 (2010). 

% http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.2908v2.pdf

%% 3) X.-S. Yang, S. Deb, Multi-objective cuckoo search for 

% Design optimization, Computers & Operations Research, 

% vol. 40, no. 6, 1616-1624 (2013).

% ----------------------------------------------------------------%

% This demo program only implements a standard version of         %

% Cuckoo Search (CS), as the Levy flights and generation of       %

% new solutions may use slightly different methods.               %

% The pseudo code was given sequentially (select a cuckoo etc),   %

% but the implementation here uses Matlab's vector capability,    %

% which results in neater/better codes and shorter running time.  % 

% This implementation is different and more efficient than the    %

% the demo code provided in the book by 

%    "Yang X. S., Nature-Inspired Optimization Algoirthms,        % 

%     Elsevier Press, 2014.  "                                    %

% --------------------------------------------------------------- %


% =============================================================== %

%% Notes:                                                         %

% 1) The constraint-handling is not included in this demo code.   %

% The main idea to show how the essential steps of cuckoo search  %

% and multi-objective cuckoo search (MOCS) can be done.           %

% 2) Different implementations may lead to slightly different     %

% behavour and/or results, but there is nothing wrong with it,    %

% as it is the nature of random walks and all metaheuristics.     %

% --------------------------------------------------------------- %

function [bestnest,fmin]=mocs_new(inp)

if nargin<1,

inp=[100 1000 0.25]; % pop_size, #iteraion, pa

end    

% Number of nests (or the population size)

n=inp(1);

% Number of iterations/generations

N_IterTotal=inp(2);

% Discovery rate of alien eggs/solutions

pa=inp(3);

d=30;   % Dimensionality of the problem

% Simple lower bounds

Lb=0*ones(1,d); 

% Simple upper bounds

Ub=1*ones(1,d);


% Number of objectives

m=2;


%% Initialize the population

for i=1:n,

   Sol(i,:)=Lb+(Ub-Lb).*rand(1,d); 

   f(i,1:m) = obj_funs(Sol(i,:), m);

end

% Store the fitness or objective values

f_new=f;

%% Sort the initialized population

x=[Sol f];  % combined into a single input

% Non-dominated sorting for the initila population

Sorted=solutions_sorting(x, m,d);

% Decompose into solutions, fitness, rank and distances

nest=Sorted(:,1:d);

f=Sorted(:,(d+1):(d+m));

RnD=Sorted(:,(d+m+1):end);


%% Starting iterations

for t=1:N_IterTotal,

    % Generate new solutions (but keep the current best)

     new_nest=get_cuckoos(nest,nest(1,:), Lb,Ub);   

  %   new_nest=nest;

     % Discovery and randomization

     new_nest=empty_nests(nest,Lb,Ub,pa) ;

     

    % Evaluate this set of solutions

      for i=1:n,

      %% Evalute the fitness/function values of the new population

        f_new(i, 1:m) = obj_funs(new_nest(i,1:d),m);

        

        if (f_new(i,1:m) <= f(i,1:m)),  

            f(i,1:m)=f_new(i,1:m);

            nest(i,:)=new_nest(i,:);

        end

        % Update the current best (stored in the first row)

        if (f_new(i,1:m) <= f(1,1:m)), 

            nest(1,1:d) = new_nest(i,1:d); 

            f(1,:)=f_new(i,:);

        end         

      end  % end of for loop

      

%% Combined population consits of both the old and new solutions

%% So the total number of solutions for sorting is 2*n

%% ! It's very important to combine both populations, otherwise,

%% the results may look odd and will be very inefficient. !

       X(1:n,:)=[new_nest f_new];      % Combine new solutions

       X((n+1):(2*n),:)=[nest f];      % Combine old solutions

       Sorted=solutions_sorting(X, m, d); 

       %% Select n solutions from a combined population of 2*n solutions

       new_Sol=Select_pop(Sorted, m, d, n);

       % Decompose the sorted solutions into solutions, fitness & ranking

       nest=new_Sol(:,1:d);           % Sorted solutions/variables

       f=new_Sol(:,(d+1):(d+m));      % Sorted objective values

       RnD=new_Sol(:,(d+m+1):end);    % Sorted ranks and distances

       

  %% Running display at each 100 iterations

   if ~mod(t,100), 

     disp(strcat('Iterations t=',num2str(t))); 

     plot(f(:, 1), f(:, 2),'rs','MarkerSize',3); 

     axis([0 1 -0.8 1]);

     xlabel('f_1'); ylabel('f_2');

     drawnow;

   end   


end %% End of iterations



%% --------------- All subfunctions are list below ------------------     %

%% Get cuckoos by ramdom walk

function nest=get_cuckoos(nest,best,Lb,Ub)

n=size(nest,1);

% For details, please see the chapters of the following Elsevier book:  

% X. S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).

beta=3/2;  % Levy exponent in Levy flights

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);


for j=1:n,

    s=nest(j,:);

    %% Levy flights by Mantegna's algorithm

    u=randn(size(s))*sigma;

    v=randn(size(s));

    step=u./abs(v).^(1/beta);

    stepsize=0.1*step.*(s-best);

    % Now the actual random walks or flights

    s=s+stepsize.*randn(size(s));

   % Apply simple bounds/limits

   nest(j,:)=simplebounds(s,Lb,Ub);

end


%% Replace some nests by constructing new solutions/nests

function new_nest=empty_nests(nest,Lb,Ub,pa)

% A fraction of worse nests are discovered with a probability pa

[n,d]=size(nest);

% The solutions represented by cuckoos to be discovered or not 

% with a probability pa. This action is implemented as a status vector

K=rand(size(nest))>pa; 

%% New solution by biased/selective random walks

stepsize=rand(1,d).*(nest(randperm(n),:)-nest(randperm(n),:));

new_nest=nest+stepsize.*K;

for j=1:size(new_nest,1)

    s=new_nest(j,:);

    new_nest(j,:)=simplebounds(s,Lb,Ub);  

end


% Application of simple bounds

function s=simplebounds(s,Lb,Ub)

  % Apply the lower bound

  ns_tmp=s;

  I=ns_tmp<Lb;

  ns_tmp(I)=Lb(I);

  

  % Apply the upper bounds 

  J=ns_tmp>Ub;

  ns_tmp(J)=Ub(J);

  % Update this new move 

  s=ns_tmp;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Objective functions 

function f = obj_funs(x, m)

% Zitzler-Deb-Thiele's funciton No 3 (ZDT function 3)

% M = # of objectives

% d = # of variables/dimensions

d=length(x);  % d=30 for ZDT 3

% First objective f1

f(1) = x(1);

g=1+9/29*sum(x(2:d));

h=1-sqrt(f(1)/g)-f(1)/g*sin(10*pi*f(1));

% Second objective f2

f(2) = g*h;

%%%%%%%%%%%%%%%%%% end of the definitions of obojectives %%%%%%%%%%%%%%%%%%


function new_Sol = Select_pop(nest, m, ndim, npop)

% The input population to this part has twice (ntwice) of the needed 

% population size (npop). Thus, selection is done based on ranking and 

% crowding distances, calculated from the non-dominated sorting

ntwice= size(nest,1);

% Ranking is stored in column Krank

Krank=m+ndim+1;

% Sort the population of size 2*npop according to their ranks

[~,Index] = sort(nest(:,Krank)); sorted_nest=nest(Index,:);

% Get the maximum rank among the population

RankMax=max(nest(:,Krank)); 


%% Main loop for selecting solutions based on ranks and crowding distances

K = 0;  % Initialization for the rank counter 

% Loop over all ranks in the population

for i =1:RankMax,  

    % Obtain the current rank i from sorted solutions

    RankSol = max(find(sorted_nest(:, Krank) == i));

    % In the new cuckoos/solutions, there can be npop solutions to fill

    if RankSol<npop,

       new_Sol(K+1:RankSol,:)=sorted_nest(K+1:RankSol,:);

    end 

    % If the population after addition is large than npop, re-arrangement

    % or selection is carried out

    if RankSol>=npop

        % Sort/Select the solutions with the current rank 

        candidate_nest = sorted_nest(K + 1 : RankSol, :);

        [~,tmp_Rank]=sort(candidate_nest(:,Krank+1),'descend');

        % Fill the rest (npop-K) cuckoo/solutions up to npop solutions 

        for j = 1:(npop-K), 

            new_Sol(K+j,:)=candidate_nest(tmp_Rank(j),:);

        end

    end

    % Record and update the current rank after adding new cuckoo solutions

    K = RankSol;

end

⛄ 运行结果

多目标布谷鸟(MOCS)优化算法附Matlab代码_ide_04

⛄ 参考文献

[1]尚志勇. 基于改进布谷鸟搜索算法的配送中心选址问题研究. (Doctoral dissertation, 河南大学).

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:​​Matlab科研工作室​

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

​智能优化算法​​​  ​​神经网络预测​​​ ​​雷达通信 ​​​ ​​无线传感器​

​信号处理​​​ ​​图像处理​​​ ​​路径规划​​​ ​​元胞自动机​​​ ​​无人机 ​​​ ​​电力系统​

⛄ 内容介绍

布谷鸟搜索(Cuckoo Search, CS)算法是 2009 年 Xin-She Yang 与 Susash Deb 提出的一种新型的启发算法[61]。算法灵感来源于一些布谷鸟种属(Cuckoo Species)的专性寄生哺育(BroodParasitism)行为,即这些种群不会像绝大多数鸟类一样自己筑巢哺育后代,而是通常把蛋产于宿主鸟巢内,由宿主代养,这种行为被称为巢寄生。此类布谷鸟会观察宿主鸟所产的卵并对其进行模仿,按照宿主鸟卵的颜色形状来产卵,导致宿主鸟辨别出布谷鸟卵的几率微乎其微,布谷鸟卵混在宿主鸟卵中,孵化后由宿主鸟哺育并与宿主雏鸟争夺生存资源。然而,布谷鸟卵一旦被宿主鸟识破情况便不同,宿主将完全摧毁鸟巢或是仅仅将布谷鸟卵摧毁。因此布谷鸟在繁殖季会寻找孵化周期类似、雏鸟习性类似以及卵外观类似的宿主鸟。布谷鸟通常会趁宿主外出时将卵产于巢内,有时会将宿主卵推出巢后进行产卵,使布谷雏鸟独享生存资源,以提高生存几率。此外,布谷鸟等动物的觅食过程是也是一种有启发性的随机行为过程。所在位置确定移动的下一个目标点,所选取的数学模型决定移动方向。根据当前位置与到下一个位置的转移概率,它们会飞向或是走向搜索路径。鸟类的这种飞行行为,在很多研究中被证明为莱维飞行(Levy Flight)的典型特征

多目标布谷鸟(MOCS)优化算法附Matlab代码_sed_05

多目标布谷鸟(MOCS)优化算法附Matlab代码_ide_06

多目标布谷鸟(MOCS)优化算法附Matlab代码_ide_07

⛄ 部分代码

%% Cuckoo Search (CS) algorithm by Xin-She Yang and Suash Deb     %

% Programmed by Xin-She Yang at Cambridge University              %

% Programming dates: Nov 2008 to June 2009                        %

% Last revised: Dec  2009   (simplified version for demo only)    %

% Multiobjective cuckoo search (MOCS) added in July 2012,         %

% Then, MOCS was updated in Sept 2015.                     Thanks %

% -----------------------------------------------------------------

%% References -- Citation Details:

%% 1) X.-S. Yang, S. Deb, Cuckoo search via Levy flights,

% in: Proc. of World Congress on Nature & Biologically Inspired

% Computing (NaBIC 2009), December 2009, India,

% IEEE Publications, USA,  pp. 210-214 (2009).

% http://arxiv.org/PS_cache/arxiv/pdf/1003/1003.1594v1.pdf 

%% 2) X.-S. Yang, S. Deb, Engineering optimization by cuckoo search,

% Int. J. Mathematical Modelling and Numerical Optimisation, 

% Vol. 1, No. 4, 330-343 (2010). 

% http://arxiv.org/PS_cache/arxiv/pdf/1005/1005.2908v2.pdf

%% 3) X.-S. Yang, S. Deb, Multi-objective cuckoo search for 

% Design optimization, Computers & Operations Research, 

% vol. 40, no. 6, 1616-1624 (2013).

% ----------------------------------------------------------------%

% This demo program only implements a standard version of         %

% Cuckoo Search (CS), as the Levy flights and generation of       %

% new solutions may use slightly different methods.               %

% The pseudo code was given sequentially (select a cuckoo etc),   %

% but the implementation here uses Matlab's vector capability,    %

% which results in neater/better codes and shorter running time.  % 

% This implementation is different and more efficient than the    %

% the demo code provided in the book by 

%    "Yang X. S., Nature-Inspired Optimization Algoirthms,        % 

%     Elsevier Press, 2014.  "                                    %

% --------------------------------------------------------------- %


% =============================================================== %

%% Notes:                                                         %

% 1) The constraint-handling is not included in this demo code.   %

% The main idea to show how the essential steps of cuckoo search  %

% and multi-objective cuckoo search (MOCS) can be done.           %

% 2) Different implementations may lead to slightly different     %

% behavour and/or results, but there is nothing wrong with it,    %

% as it is the nature of random walks and all metaheuristics.     %

% --------------------------------------------------------------- %

function [bestnest,fmin]=mocs_new(inp)

if nargin<1,

inp=[100 1000 0.25]; % pop_size, #iteraion, pa

end    

% Number of nests (or the population size)

n=inp(1);

% Number of iterations/generations

N_IterTotal=inp(2);

% Discovery rate of alien eggs/solutions

pa=inp(3);

d=30;   % Dimensionality of the problem

% Simple lower bounds

Lb=0*ones(1,d); 

% Simple upper bounds

Ub=1*ones(1,d);


% Number of objectives

m=2;


%% Initialize the population

for i=1:n,

   Sol(i,:)=Lb+(Ub-Lb).*rand(1,d); 

   f(i,1:m) = obj_funs(Sol(i,:), m);

end

% Store the fitness or objective values

f_new=f;

%% Sort the initialized population

x=[Sol f];  % combined into a single input

% Non-dominated sorting for the initila population

Sorted=solutions_sorting(x, m,d);

% Decompose into solutions, fitness, rank and distances

nest=Sorted(:,1:d);

f=Sorted(:,(d+1):(d+m));

RnD=Sorted(:,(d+m+1):end);


%% Starting iterations

for t=1:N_IterTotal,

    % Generate new solutions (but keep the current best)

     new_nest=get_cuckoos(nest,nest(1,:), Lb,Ub);   

  %   new_nest=nest;

     % Discovery and randomization

     new_nest=empty_nests(nest,Lb,Ub,pa) ;

     

    % Evaluate this set of solutions

      for i=1:n,

      %% Evalute the fitness/function values of the new population

        f_new(i, 1:m) = obj_funs(new_nest(i,1:d),m);

        

        if (f_new(i,1:m) <= f(i,1:m)),  

            f(i,1:m)=f_new(i,1:m);

            nest(i,:)=new_nest(i,:);

        end

        % Update the current best (stored in the first row)

        if (f_new(i,1:m) <= f(1,1:m)), 

            nest(1,1:d) = new_nest(i,1:d); 

            f(1,:)=f_new(i,:);

        end         

      end  % end of for loop

      

%% Combined population consits of both the old and new solutions

%% So the total number of solutions for sorting is 2*n

%% ! It's very important to combine both populations, otherwise,

%% the results may look odd and will be very inefficient. !

       X(1:n,:)=[new_nest f_new];      % Combine new solutions

       X((n+1):(2*n),:)=[nest f];      % Combine old solutions

       Sorted=solutions_sorting(X, m, d); 

       %% Select n solutions from a combined population of 2*n solutions

       new_Sol=Select_pop(Sorted, m, d, n);

       % Decompose the sorted solutions into solutions, fitness & ranking

       nest=new_Sol(:,1:d);           % Sorted solutions/variables

       f=new_Sol(:,(d+1):(d+m));      % Sorted objective values

       RnD=new_Sol(:,(d+m+1):end);    % Sorted ranks and distances

       

  %% Running display at each 100 iterations

   if ~mod(t,100), 

     disp(strcat('Iterations t=',num2str(t))); 

     plot(f(:, 1), f(:, 2),'rs','MarkerSize',3); 

     axis([0 1 -0.8 1]);

     xlabel('f_1'); ylabel('f_2');

     drawnow;

   end   


end %% End of iterations



%% --------------- All subfunctions are list below ------------------     %

%% Get cuckoos by ramdom walk

function nest=get_cuckoos(nest,best,Lb,Ub)

n=size(nest,1);

% For details, please see the chapters of the following Elsevier book:  

% X. S. Yang, Nature-Inspired Optimization Algorithms, Elsevier, (2014).

beta=3/2;  % Levy exponent in Levy flights

sigma=(gamma(1+beta)*sin(pi*beta/2)/(gamma((1+beta)/2)*beta*2^((beta-1)/2)))^(1/beta);


for j=1:n,

    s=nest(j,:);

    %% Levy flights by Mantegna's algorithm

    u=randn(size(s))*sigma;

    v=randn(size(s));

    step=u./abs(v).^(1/beta);

    stepsize=0.1*step.*(s-best);

    % Now the actual random walks or flights

    s=s+stepsize.*randn(size(s));

   % Apply simple bounds/limits

   nest(j,:)=simplebounds(s,Lb,Ub);

end


%% Replace some nests by constructing new solutions/nests

function new_nest=empty_nests(nest,Lb,Ub,pa)

% A fraction of worse nests are discovered with a probability pa

[n,d]=size(nest);

% The solutions represented by cuckoos to be discovered or not 

% with a probability pa. This action is implemented as a status vector

K=rand(size(nest))>pa; 

%% New solution by biased/selective random walks

stepsize=rand(1,d).*(nest(randperm(n),:)-nest(randperm(n),:));

new_nest=nest+stepsize.*K;

for j=1:size(new_nest,1)

    s=new_nest(j,:);

    new_nest(j,:)=simplebounds(s,Lb,Ub);  

end


% Application of simple bounds

function s=simplebounds(s,Lb,Ub)

  % Apply the lower bound

  ns_tmp=s;

  I=ns_tmp<Lb;

  ns_tmp(I)=Lb(I);

  

  % Apply the upper bounds 

  J=ns_tmp>Ub;

  ns_tmp(J)=Ub(J);

  % Update this new move 

  s=ns_tmp;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%% Objective functions 

function f = obj_funs(x, m)

% Zitzler-Deb-Thiele's funciton No 3 (ZDT function 3)

% M = # of objectives

% d = # of variables/dimensions

d=length(x);  % d=30 for ZDT 3

% First objective f1

f(1) = x(1);

g=1+9/29*sum(x(2:d));

h=1-sqrt(f(1)/g)-f(1)/g*sin(10*pi*f(1));

% Second objective f2

f(2) = g*h;

%%%%%%%%%%%%%%%%%% end of the definitions of obojectives %%%%%%%%%%%%%%%%%%


function new_Sol = Select_pop(nest, m, ndim, npop)

% The input population to this part has twice (ntwice) of the needed 

% population size (npop). Thus, selection is done based on ranking and 

% crowding distances, calculated from the non-dominated sorting

ntwice= size(nest,1);

% Ranking is stored in column Krank

Krank=m+ndim+1;

% Sort the population of size 2*npop according to their ranks

[~,Index] = sort(nest(:,Krank)); sorted_nest=nest(Index,:);

% Get the maximum rank among the population

RankMax=max(nest(:,Krank)); 


%% Main loop for selecting solutions based on ranks and crowding distances

K = 0;  % Initialization for the rank counter 

% Loop over all ranks in the population

for i =1:RankMax,  

    % Obtain the current rank i from sorted solutions

    RankSol = max(find(sorted_nest(:, Krank) == i));

    % In the new cuckoos/solutions, there can be npop solutions to fill

    if RankSol<npop,

       new_Sol(K+1:RankSol,:)=sorted_nest(K+1:RankSol,:);

    end 

    % If the population after addition is large than npop, re-arrangement

    % or selection is carried out

    if RankSol>=npop

        % Sort/Select the solutions with the current rank 

        candidate_nest = sorted_nest(K + 1 : RankSol, :);

        [~,tmp_Rank]=sort(candidate_nest(:,Krank+1),'descend');

        % Fill the rest (npop-K) cuckoo/solutions up to npop solutions 

        for j = 1:(npop-K), 

            new_Sol(K+j,:)=candidate_nest(tmp_Rank(j),:);

        end

    end

    % Record and update the current rank after adding new cuckoo solutions

    K = RankSol;

end

⛄ 运行结果

多目标布谷鸟(MOCS)优化算法附Matlab代码_sed_08

⛄ 参考文献

[1]尚志勇. 基于改进布谷鸟搜索算法的配送中心选址问题研究. (Doctoral dissertation, 河南大学).

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除