吴恩达Coursera, 机器学习专项课程, Machine Learning
原创
©著作权归作者所有:来自51CTO博客作者楚千羽的原创作品,请联系作者获取转载授权,否则将追究法律责任
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件1:
吴恩达Coursera, 机器学习专项课程, Machine Learning:Unsupervised Learning, Recommenders, Reinforcement Learning第二周所有jupyter notebook文件(包括实验室练习文件)1
本次作业
Exercise 1
# GRADED FUNCTION: cofi_cost_func
# UNQ_C1
def cofi_cost_func(X, W, b, Y, R, lambda_):
"""
Returns the cost for the content-based filtering
Args:
X (ndarray (num_movies,num_features)): matrix of item features
W (ndarray (num_users,num_features)) : matrix of user parameters
b (ndarray (1, num_users) : vector of user parameters
Y (ndarray (num_movies,num_users) : matrix of user ratings of movies
R (ndarray (num_movies,num_users) : matrix, where R(i, j) = 1 if the i-th movies was rated by the j-th user
lambda_ (float): regularization parameter
Returns:
J (float) : Cost
"""
nm, nu = Y.shape
J = 0
### START CODE HERE ###
error = 0.5 * (np.square(X @ W.T+b - Y) * R).sum()
reg1 = 0.5 * lambda_ * np.square(X).sum()
reg2 = 0.5 * lambda_ * np.square(W).sum()
J = error + reg1 + reg2
### END CODE HERE ###
return J
作者:楚千羽