CIFAR100与VGG13实战_卷积

import tensorflow as tf
from tensorflow.keras import layers, optimizers, datasets, Sequential
import os

os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
tf.random.set_seed(2345)

def preprocess(x, y):
# [0~1]
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x, y

(x, y), (x_test, y_test) = datasets.cifar100.load_data()
y = tf.squeeze(y, axis=1)
y_test = tf.squeeze(y_test, axis=1)
print(x.shape, y.shape, x_test.shape, y_test.shape)

train_db = tf.data.Dataset.from_tensor_slices((x, y))
train_db = train_db.map(preprocess).shuffle(10000).batch(64)

test_db = tf.data.Dataset.from_tensor_slices((x_test, y_test))
test_db = test_db.map(preprocess).batch(64)

sample = next(iter(train_db))
print('sample:', sample[0].shape, sample[1].shape,tf.reduce_min(sample[0]), tf.reduce_max(sample[0]))

conv_layers = [ # 5 units of conv + max pooling
# unit 1 (卷积核个数64)
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(64, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),

# unit 2 (卷积核个数128)
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(128, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),

# unit 3 (卷积核个数256)
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(256, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),

# unit 4 (卷积核个数512)
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),

# unit 5 (卷积核个数512)
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.Conv2D(512, kernel_size=[3, 3], padding="same", activation=tf.nn.relu),
layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="same"),
]
# [b, h, w, N]
# [b, 32, 32, 3] => [b, 1, 1, 512]
conv_net = Sequential(conv_layers)

# full connect
fc_net = Sequential([
layers.Dense(256, activation=tf.nn.relu),
layers.Dense(128, activation=tf.nn.relu),
layers.Dense(100, activation=None)
])

conv_net.build(input_shape=[None, 32, 32, 3])
fc_net.build(input_shape=[None, 512])

optimizer = optimizers.Adam(lr=1e-4)
# 初始化的 w, b
variables = conv_net.trainable_variables + fc_net.trainable_variables
# print(variables)

def main():

for epoch in range(50):
for step, (x, y) in enumerate(train_db):
with tf.GradientTape() as tape:
# [b, 32, 32, 3] => [b, 1, 1, 512]
out = conv_net(x)
# flattern => [b, 512]
out = tf.reshape(out, [-1, 512])
# [b, 512] => [b, 100]
logits = fc_net(out)
y_onehot = tf.one_hot(y, depth=100)
loss = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss = tf.reduce_mean(loss)
grads = tape.gradient(loss, variables)
optimizer.apply_gradients(zip(grads, variables)) # 对variables进行梯度更新
if step % 100 == 0:
print(epoch, step, "loss:", float(loss))

total_num = 0
total_correct = 0
for x, y in test_db:
out = conv_net(x)
out = tf.reshape(out, [-1, 512])
out = fc_net(out)

pred = tf.argmax(out, axis=1)
pred = tf.cast(pred, dtype=tf.int32)

correct = tf.cast(tf.equal(y, pred), dtype=tf.int32)
correct = tf.reduce_sum(correct)

total_correct += int(correct)
total_num += x.shape[0]


print("epoch:%s, acc:%s" % (epoch, total_correct / total_num))

if __name__=="__main__":
main()

CIFAR100与VGG13实战_深度学习_02