本文主要基于台大林轩田老师的机器学习技法课程中关于使用融合(aggregation)方法获得更好性能的g的一个总结。包括从静态的融合方法blending(已经有了一堆的g,通过uniform:voting/average、non-uniform:linear/non-linear和condition的融合形式来获取更好地性能),动态融合方法learning(没有一堆的g set,而是通过online learning获取g,边学习g,变边进行融合,对比于blending中的uniform融合形式的有bagging,具有uniform融合形式的有AdaBoost(Re-weighting),具有condition融合形式的有Decision Tree),之后还包括一些aggregation model的aggregation,比如Random Forest、Gradient Boosted Decision Tree等。利用aggregation model进行机器学习有以下两方面的考量:1)cure of underfitting:比如AdaBoost-Stump,对于单个Decision Stump进行分类或拟合时,很显然是能力不够的underfitting,我们需要提升G的能力,而通过aggregation就可以使得G变得strong和powerful;2)cure of overfitting:比如classification来说,我们通过aggregation得到了类似support vector的large margin的效果,即我们选择的是“moderate”的那个线(最明显的例子就是对于PLA,我得到了一堆的二维平面上可以分开的g,那么我通过融合后得到的G实际上是moderate,对应SVM中的large margin),从而实现了regularization的效果,能抑制overfitting。