基于visual Studio2013解决面试题之1309求子集_下载地址


题目

基于visual Studio2013解决面试题之1309求子集_组合问题_02


解决代码及点评
/*
把求子集运算转换为组合问题。
假设集合中包含 N 个元素, 子集合数 = C(N, 0) + C(N, 1) + ... + C(N, N-1) + C(N, N),对于
任一个子集合,可以用一个 N 元组表示,即 <S1, S2, ... Sn-1, Sn>, 其中 Si 取值范围为(0, 1),
0 表示不该子集合不包含该元素,1 表示该子集合包含该元素。因此,求子集合就转换成了
罗列所示可能组合的算法。子集合数 = 2^n。
*/

#include <iostream>
using namespace std;

void Sub(int i, int n, char *pszBuf1, char *pszBuf2)
{
int j;
if (i >= n)
{
cout<<"(";
for (j = 0; j < n; j++)
{
if (pszBuf2[j] == '1')
{
cout<<pszBuf1[j];
}
}
cout<<")"<<endl;
}
else
{
pszBuf2[i] = '1';
Sub(i+1, n, pszBuf1, pszBuf2);
pszBuf2[i] = '0';
Sub(i+1, n, pszBuf1, pszBuf2);
}
}


int main()
{
char szBuf1[] = "ac";
char szBuf2[10] = {0};
Sub(0,strlen(szBuf1),szBuf1, szBuf2);
system("pause");
return 0;
}
代码下载及其运行

 


下载代码并解压后,用VC2013打开interview.sln,并设置对应的启动项目后,点击运行即可,具体步骤如下:

1)设置启动项目:右键点击解决方案,在弹出菜单中选择“设置启动项目”

基于visual Studio2013解决面试题之1309求子集_下载地址_03

2)在下拉框中选择相应项目,项目名和博客编号一致

基于visual Studio2013解决面试题之1309求子集_弹出菜单_04

3)点击“本地Windows调试器”运行

基于visual Studio2013解决面试题之1309求子集_下载地址_05


程序运行结果

基于visual Studio2013解决面试题之1309求子集_windows调试_06