Given an array of n
integers nums
and an integer target
, find the number of index triplets i
, j
, k
with 0 <= i < j < k < n
that satisfy the condition nums[i] + nums[j] + nums[k] < target
.
Example 1:
Input: nums = [-2,0,1,3], target = 2 Output: 2 Explanation: Because there are two triplets which sums are less than 2: [-2,0,1] [-2,0,3]
Example 2:
Input: nums = [], target = 0 Output: 0
Example 3:
Input: nums = [0], target = 0 Output: 0
Constraints:
n == nums.length
0 <= n <= 3500
-100 <= nums[i] <= 100
-100 <= target <= 100
Ideas: T: O(n ^ 2) S: O(1)
1. sort nums
2. 建一个two sum function, 如果total < target, count += end - start; start += 1; else end -= 1
3. for loop, 然后以target - nums[i] 作为two sum function 的target, 最后返回总count数
Code:
class Solution: def threeSumSmaller(self, nums: List[int], target: int) -> int: n = len(nums) nums.sort() ans = 0 for i in range(n - 2): ans += self.twoSum(nums, i + 1, n - 1, target - nums[i]) return ans def twoSum(self, nums, start, end, target): count = 0 while start < end: if (nums[start] + nums[end] < target): count += end - start start += 1 else: end -= 1 return count