加法 & 乘法原理
加法原理
完成一个工程可以有 \(n\) 类办法, \(a_i(1<i < n)\) 代表第 \(i\) 类方法的数目。那么完成这件事共有 \(S=a_1+a_2+\cdots +a_n\) 种不同的方法。
乘法原理
完成一个工程需要分 \(n\) 个步骤, \(a_i(1 \le i \le n)\) 代表第 \(i\) 个步骤的不同方法数目。那么完成这件事共有 \(S = a_1 \times a_2 \times \cdots \times a_n\) 种不同的方法。
排列与组合基础
排列数
从 \(n\) 个不同元素中,任取 \(m\) ( \(m\leq n\) , \(m\) 与 \(n\) 均为自然数,下同)个元素按照一定的顺序排成一列,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的一个排列;从 \(n\) 个不同元素中取出 \(m\) ( \(m\leq n\) ) 个元素的所有排列的个数,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的排列数,用符号 \(\mathrm A_n^m\) (或者是 \(\mathrm P_n^m\) )表示。
排列的计算公式如下:
\(n!\) 代表 \(n\) 的阶乘,即 \(6! = 1 \times 2 \times 3 \times 4 \times 5 \times 6\) 。
公式可以这样理解: \(n\) 个人选 \(m\) 个来排队 ( \(m \le n\) )。第一个位置可以选 \(n\) 个,第二位置可以选 \(n-1\) 个,以此类推,第 \(m\) 个(最后一个)可以选 \(n-m+1\) 个,得:
全排列: \(n\) 个人全部来排队,队长为 \(n\) 。第一个位置可以选 \(n\) 个,第二位置可以选 \(n-1\) 个,以此类推得:
全排列是排列数的一个特殊情况。
组合数
从 \(n\) 个不同元素中,任取 \(m\) ( \(m\leq n\) ) 个元素组成一个集合,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的一个组合;从 \(n\) 个不同元素中取出 \(m\) ( \(m\leq n\) ) 个元素的所有组合的个数,叫做从 \(n\) 个不同元素中取出 \(m\) 个元素的组合数。用符号 \(\mathrm C_n^m\) 来表示。
组合数计算公式
如何理解上述公式?我们考虑 \(n\) 个人 \(m\) ( \(m \le n\) ) 个出来,不排队,不在乎顺序 \(C_n^m\) 。如果在乎排列那么就是 \(A_n^m\) ,如果不在乎那么就要除掉重复,那么重复了多少?同样选出的来的 \(m\) 个人,他们还要“全排”得 \(A_n^m\) ,所以得:
组合数也常用 \(\displaystyle \binom{n}{m}\) 表示,读作「 \(n\) 选 \(m\) 」,即 \(\displaystyle \mathrm C_n^m=\binom{n}{m}\) 。实际上,后者表意清晰明了,美观简洁,因此现在数学界普遍采用 \(\displaystyle \binom{n}{m}\) 的记号而非 \(\mathrm C_n^m\) 。
组合数也被称为「二项式系数」,下文二项式定理将会阐述其中的联系。
特别地,规定当 \(m>n\) 时, \(\mathrm A_n^m=\mathrm C_n^m=0\) 。
二项式定理
在进入排列组合进阶篇之前,我们先介绍一个与组合数密切相关的定理——二项式定理。
二项式定理阐明了一个展开式的系数:
证明可以采用数学归纳法,利用 \(\displaystyle \binom{n}{k}+\binom{n}{k-1}=\binom{n+1}{k}\) 做归纳。
二项式定理也可以很容易扩展为多项式的形式:
设 n 为正整数, \(x_i\) 为实数,
其中的 \(\binom{n}{n_1n_2\cdots n_t}\) 是多项式系数,它的性质也很相似:
排列与组合进阶篇
接下来我们介绍一些排列组合的变种。
多重集的排列数 | 多重组合数
请大家一定要区分 多重组合数 与 多重集的组合数 !两者是完全不同的概念!
多重集是指包含重复元素的广义集合。设 \(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\) 表示由 \(n_1\) 个 \(a_1\) , \(n_2\) 个 \(a_2\) ,…, \(n_k\) 个 \(a_k\) 组成的多重集, \(S\) 的全排列个数为
相当于把相同元素的排列数除掉了。具体地,你可以认为你有 \(k\) 种不一样的球,每种球的个数分别是 \(n_1,n_2,\cdots,n_k\) ,且 \(n=n_1+n_2+\ldots+n_k\) 。这 \(n\) 个球的全排列数就是 多重集的排列数 。多重集的排列数常被称作 多重组合数 。我们可以用多重组合数的符号表示上式:
可以看出, \(\displaystyle \binom{n}{m}\) 等价于 \(\displaystyle \binom{n}{m,n-m}\) ,只不过后者较为繁琐,因而不采用。
多重集的组合数 1
设 \(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\) 表示由 \(n_1\) 个 \(a_1\) , \(n_2\) 个 \(a_2\) ,…, \(n_k\) 个 \(a_k\) 组成的多重集。那么对于整数 \(r(r<n_i,\forall i\in[1,k])\) ,从 \(S\) 中选择 \(r\) 个元素组成一个多重集的方案数就是 多重集的组合数 。这个问题等价于 \(x_1+x_2+\cdots+x_k=r\) 的非负整数解的数目,可以用插板法解决,答案为
多重集的组合数 2
考虑这个问题:设 \(S=\{n_1\cdot a_1,n_2\cdot a_2,\cdots,n_k\cdot a_k,\}\) 表示由 \(n_1\) 个 \(a_1\) , \(n_2\) 个 \(a_2\) ,…, \(n_k\) 个 \(a_k\) 组成的多重集。那么对于正整数 \(r\) ,从 \(S\) 中选择 \(r\) 个元素组成一个多重集的方案数。
这样就限制了每种元素的取的个数。同样的,我们可以把这个问题转化为带限制的线性方程求解:
于是很自然地想到了容斥原理。容斥的模型如下:
- 全集: \(\displaystyle \sum_{i=1}^kx_i=r\) 的非负整数解。
- 属性: \(x_i\le n_i\) 。
于是设满足属性 \(i\) 的集合是 \(S_i\) , \(\overline{S_i}\) 表示不满足属性 \(i\) 的集合,即满足 \(x_i\ge n_i+1\) 的集合。那么答案即为
根据容斥原理,有:
拿全集 \(\displaystyle |U|=\binom{k+r-1}{k-1}\) 减去上式,得到多重集的组合数
其中 A 是充当枚举子集的作用,满足 \(|A|=p,\ A_i<A_{i+1}\) 。
不相邻的排列
\(1 \sim n\) 这 \(n\) 个自然数中选 \(k\) 个,这 \(k\) 个数中任何两个数不相邻数的组合有 \(\displaystyle \binom {n-k+1}{k}\) 种。
错位排列
我们把错位排列问题具体化,考虑这样一个问题:
\(n\) 封不同的信,编号分别是 \(1,2,3,4,5\) ,现在要把这 5 封信放在编号 \(1,2,3,4,5\) 的信封中,要求信封的编号与信的编号不一样。问有多少种不同的放置方法?
假设我们考虑到第 \(n\) 个信封,初始时我们暂时把第 n 封信放在第 n 个信封中,然后考虑两种情况的递推:
- 前面 \(n-1\) 个信封全部装错;
- 前面 \(n-1\) 个信封有一个没有装错其余全部装错。
对于第一种情况,前面 \(n-1\) 个信封全部装错:因为前面 \(n-1\) 个已经全部装错了,所以第 n 封只需要与前面任一一个位置交换即可,总共有 \(f(n-1)\times (n-1)\) 种情况。
对于第二种情况,前面 \(n-1\) 个信封有一个没有装错其余全部装错:考虑这种情况的目的在于,若 \(n-1\) 个信封中如果有一个没装错,那么我们把那个没装错的与 \(n\) 交换,即可得到一个全错位排列情况。
其他情况,我们不可能通过一次操作来把它变成一个长度为 n 的错排。
于是可得错位排列的递推式为 \(f(n)=(n-1)(f(n-1)+f(n-2))\) 。
错位排列数列的前几项为 \(0,1,2,9,44,265\) 。
圆排列
\(n\) 个人全部来围成一圈,所有的排列数记为 \(\mathrm Q_n^n\) 。考虑其中已经排好的一圈,从不同位置断开,又变成不同的队列。
所以有
由此可知部分圆排列的公式:
组合数性质 | 二项式推论
由于组合数在 OI 中十分重要,因此在此介绍一些组合数的性质。
相当于将选出的集合对全集取补集,故数值不变。(对称性)
由定义导出的递推式。
组合数的递推式(杨辉三角的公式表达)。我们可以利用这个式子,在 \(O(n^2)\) 的复杂度下推导组合数。
这是二项式定理的特殊情况。取 \(a=b=1\) 就得到上式。
二项式定理的另一种特殊情况,可取 \(a=1, b=-1\) 。
拆组合数的式子,在处理某些数据结构题时会用到。
这是 \((6)\) 的特殊情况,取 \(n=m\) 即可。
带权和的一个式子,通过对 \((3)\) 对应的多项式函数求导可以得证。
与上式类似,可以通过对多项式函数求导证明。
可以通过组合意义证明,在恒等式证明中较常用。
通过定义可以证明。
其中 \(F\) 是斐波那契数列。
通过组合分析——考虑 \(S={a_1, a_2, \cdots, a_{n+1}}\) 的 \(k+1\) 子集数可以得证。
The desire of his soul is the prophecy of his fate
你灵魂的欲望,是你命运的先知。