# -*- coding: utf-8 -*-
# @Time : 2018/8/31 14:32
# @Author : cxa
# @File : glomtest.py
# @Software: PyCharm
from glom import glom, Coalesce
import simplejson as sj
import pprint
jsonstr = """{"CERT_ID": "32143434", "CERT_NAME": "ssss", "PROD_ID": "CREDIT", "MP": "10086",
"TRANS_INFO": "20180911", "DATA": [{"attributes": {"CR_PS_MC_LM24": 0.0, "CR_TR_TR_LM24": 0.0,
"CD_AL_IS_LM24": 1.0, "CD_CC_AL_LM12": 0.0,
"CR_DC_OGO2_LM12": 0.0, "CR_EX_EP_LM06": 0.0,
"CR_CC_CS_LM03": 0.0}
}, {"blacklist": {}}, {
"loan": {"record": [
{"matchType": "phone", "matchValue": "1204",
"matchId": "CDGFHHSSSFAFRFRFRRFR",
"classification": [{"M9": {
"other": {"orgNums": 1, "loanAmount": null,
"totalAmount": null, "repayAmount": null,
"latestLoanTime": null}, "bank": null}},
{"M12": {"other": {"orgNums": 2,
"loanAmount": null,
"totalAmount": null,
"repayAmount": null,
"latestLoanTime": null},
"bank": null}}],
"latestRepaySuccessTime": null}]}}, {"overdue": {}}]}"""
def get_last_str(jsonstr):
new_dict = {}
last_dict = dict(sj.loads(f'{jsonstr}'))
spec = {
'attributes': ('DATA', [Coalesce('attributes', default=None)]),
'loan': ('DATA', [Coalesce(('loan.record', [
Coalesce(('classification', [Coalesce(*([f'M{i}.other' for i in range(1, 999)]),*([f'M{i}.bankLoan' for i in range(1, 999)]), default=None)]),
default=None)]), default=None)])
}
gm = glom(last_dict.copy(), spec,default="出错了")
for k, v in last_dict.items():
if not isinstance(v, (list, dict)):
new_dict.setdefault(k, v)
else:
for v2 in v:
for k3, v3 in v2.items():
if isinstance(v3, dict):
if v3:
if "record" in v3.keys():
recordstr = glom(v3, ('record', [Coalesce('classification', default=None)],
[[Coalesce(*([f'M{i}.other' for i in range(1, 999)]),*([f'M{i}.bankLoan' for i in range(1, 999)]),
default=None)]]))
for l in recordstr[0]:
try:
new_dict.update(
{f"{lk}_1" if lk in new_dict.keys() else lk: lv for lk, lv in l.items()})
except:
pass
else:
new_dict.update(
{f"{lk}_1" if lk in new_dict.keys() else lk: lv for lk, lv in v3.items()})
return str(new_dict)
python 结构化数据解析
转载本文章为转载内容,我们尊重原作者对文章享有的著作权。如有内容错误或侵权问题,欢迎原作者联系我们进行内容更正或删除文章。
提问和评论都可以,用心的回复会被更多人看到
评论
发布评论
相关文章
-
结构化数据、半结构化数据和非结构化数据java经验集锦 通用实践 SQL DB 数据
-
非结构化excel解析python
1.采集简易流程: 非结构化数据-数据采集-数据清洗-结构化数据-采集存储 非结构化数据: 不方便用数据库二维逻辑表现的数据,包含种类:音频、视频、文本、日志、WEB数据(html、xml)
非结构化excel解析python 服务器 数据 数据采集
















