归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) ... >>> min_max_scaler = preprocessing.MinMaxScaler() >>> X_train_minmax = min_max_scaler.fit_transform(X_train) >>> X_train_minmax array([[ 0.5 , 0. , 1. ], [ 1. , 0.5 , 0.33333333], [ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中 >>> X_test = np.array([[ -3., -1., 4.]]) >>> X_test_minmax = min_max_scaler.transform(X_test) >>> X_test_minmax array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性 >>> min_max_scaler.scale_ array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_ array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing >>> import numpy as np >>> X = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) >>> X_scaled = preprocessing.scale(X) >>> X_scaled array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差 >>> X_scaled.mean(axis=0) array([ 0., 0., 0.]) >>> X_scaled.std(axis=0) array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X) >>> scaler StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_ array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_ array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X) array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换 >>> scaler.transform([[-1., 1., 0.]]) array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing >>> normalizer Normalizer(copy=True, norm='l2') >>> >>> normalizer.transform(X) array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]]) array([[-0.70..., 0.70..., 0. ...]])
归一化 (Normalization):
属性缩放到一个指定的最大和最小值(通常是1-0)之间,这可以通过preprocessing.MinMaxScaler类实现。常用的最小最大规范化方法(x-min(x))/(max(x)-min(x))
1、对于方差非常小的属性可以增强其稳定性。2、维持稀疏矩阵中为0的条目
>>> X_train = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) ... >>> min_max_scaler = preprocessing.MinMaxScaler() >>> X_train_minmax = min_max_scaler.fit_transform(X_train) >>> X_train_minmax array([[ 0.5 , 0. , 1. ], [ 1. , 0.5 , 0.33333333], [ 0. , 1. , 0. ]]) >>> #将相同的缩放应用到测试集数据中 >>> X_test = np.array([[ -3., -1., 4.]]) >>> X_test_minmax = min_max_scaler.transform(X_test) >>> X_test_minmax array([[-1.5 , 0. , 1.66666667]]) >>> #缩放因子等属性 >>> min_max_scaler.scale_ array([ 0.5 , 0.5 , 0.33...]) >>> min_max_scaler.min_ array([ 0. , 0.5 , 0.33...])
当然,在构造类对象的时候也可以直接指定最大最小值的范围:feature_range=(min, max),此时应用的公式变为:
X_std=(X-X.min(axis=0))/(X.max(axis=0)-X.min(axis=0))
X_scaled=X_std/(max-min)+min
标准化(Standardization):
>>> from sklearn import preprocessing >>> import numpy as np >>> X = np.array([[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]]) >>> X_scaled = preprocessing.scale(X) >>> X_scaled array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#处理后数据的均值和方差 >>> X_scaled.mean(axis=0) array([ 0., 0., 0.]) >>> X_scaled.std(axis=0) array([ 1., 1., 1.])
>>> scaler = preprocessing.StandardScaler().fit(X) >>> scaler StandardScaler(copy=True, with_mean=True, with_std=True) >>> scaler.mean_ array([ 1. ..., 0. ..., 0.33...]) >>> scaler.std_ array([ 0.81..., 0.81..., 1.24...]) >>> scaler.transform(X) array([[ 0. ..., -1.22..., 1.33...], [ 1.22..., 0. ..., -0.26...], [-1.22..., 1.22..., -1.06...]]) >>>#可以直接使用训练集对测试集数据进行转换 >>> scaler.transform([[-1., 1., 0.]]) array([[-2.44..., 1.22..., -0.26...]])
正则化:
p-范数的计算公式:||X||p=(|x1|^p+|x2|^p+...+|xn|^p)^1/p
>>> X = [[ 1., -1., 2.], ... [ 2., 0., 0.], ... [ 0., 1., -1.]] >>> X_normalized = preprocessing.normalize(X, norm='l2') >>> X_normalized array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]])
>>> normalizer = preprocessing.Normalizer().fit(X) # fit does nothing >>> normalizer Normalizer(copy=True, norm='l2') >>> >>> normalizer.transform(X) array([[ 0.40..., -0.40..., 0.81...], [ 1. ..., 0. ..., 0. ...], [ 0. ..., 0.70..., -0.70...]]) >>> normalizer.transform([[-1., 1., 0.]]) array([[-0.70..., 0.70..., 0. ...]])