求a^b%c,(1  <= a,b <= 2^62, 1 <= c <= 10^9)

最主要的高速幂

_LL mod_exp(_LL a, _LL b, int c)
{
_LL ans = 1;
_LL t = a%c;

while(b)
{
if(b&1)
ans = ans*t%c;
t = t*t%c;
b >>= 1;
}
return ans;
}




求a^b%c,(1 <= a,b,c <= 2^62)

由于c在long long范围内,中间两个long long 相乘的时候会超long long。所以对乘法再写一个高速乘法的函数,将乘法变为加法,每加一次就进行取模,就不会超long long了。

#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
#define C 240
#define S 20
using namespace std;
const int maxn = 110;

// a*b%c
LL mul_mod(LL a, LL b, LL c)
{
LL ans = 0;
a %= n;
b %= n;
while(b)
{
if(b&1)
{
ans = ans+a;
if(ans >= c) ans -= c;
}
a <<= 1;
if(a >= c)
a -= c;
b >>= 1;
}
return ans;
}
//a^b%c
LL pow_mod(LL a, LL b, LL c)
{
LL ans = 1;
a = a%c;
while(b)
{
if(b&1)
ans = mul_mod(ans,a,c);
a = mul_mod(a,a,c);
b >>= 1;
}
return ans;
}
int main()
{
LL a,b,c;
while(~scanf("%lld %lld %lld",&a,&b,&c))
{
LL ans = pow_mod(a,b,c);
printf("%lld\n",ans);
}
return 0;
}



求a^b%c (1 <= a,c <= 10^9, 1 <= b <= 10^1000000)

b相当大,高速幂超时。

有一个定理: a^b%c = a^(b%phi[c]+phi[c])%c,当中要满足b >= phi[c]。这样将b变为long long范围内的数,再进行高速幂。至于这个定理为什么成立,如今明确一点。这篇讲的

#include <stdio.h>
#include <iostream>
#include <map>
#include <set>
#include <list>
#include <stack>
#include <vector>
#include <math.h>
#include <string.h>
#include <queue>
#include <string>
#include <stdlib.h>
#include <algorithm>
#define LL long long
#define _LL __int64
#define eps 1e-12
#define PI acos(-1.0)
#define C 240
#define S 20
using namespace std;
const int maxn = 110;

LL a,c,cc;
char b[1000010];

LL Eular(LL num)
{
LL res = num;
for(int i = 2; i*i <= num; i++)
{
if(num%i == 0)
{
res -= res/i;
while(num%i == 0)
num /= i;
}
}
if(num > 1)
res -= res/num;
return res;
}

bool Comper(char s[], LL num)
{
char bit[30];
int len2 = 0,len1;
while(num)
{
bit[len2++] = num%10;
num = num/10;
}
bit[len2] = '\0';

len1 = strlen(s);
if(len1 > len2)
return true;
else if(len1 < len2)
return false;
else
{
for(int i = 0; i < len1; i++)
{
if(s[i] < bit[len1-i-1])
return false;
}
return true;
}
}

//对大整数取模,一位一位的取。
LL Mod(char s[], LL num)
{
int len = strlen(s);
LL ans = 0;
for(int i = 0; i < len; i++)
{
ans = (ans*10 + s[i]-'0')%num;
}
return ans;
}

LL Pow(LL a, LL b, LL c)
{
LL ans = 1;
a = a%c;
while(b)
{
if(b&1)
ans = ans*a%c;
a = a*a%c;
b >>= 1;
}
return ans;
}

int main()
{
while(~scanf("%lld %s %lld",&a,b,&c))
{
LL phi_c = Eular(c);
LL ans;
if(Comper(b,phi_c)) // b >= phi[c]
{
cc = Mod(b,phi_c)+phi_c;
ans = Pow(a,cc,c);
}
else
{
int len = strlen(b);
cc = 0;
for(int i = 0; i < len; i++)
cc = cc*10 + b[i]-'0';
ans = Pow(a,cc,c);
}
printf("%lld\n",ans);
}
return 0;
}