文章目录
- 数仓分层
- 为什么要分层
- 数据运营层:ODS(Operational Data Store)
- 数据仓库层:DW(Data Warehouse)
- 维表层:DIM(Dimension)
- 数据明细层:DWD(Data Warehouse Detail)
- 数据中间层:DWM(Data WareHouse Middle)
- 数据服务层:DWS(Data WareHouse Servce)
- 主题数据层:DWT(Data WareHouse Topic)
- 数据应用层:APP(Application)
- 数据集市与数据仓库概念
- 数仓命名规范
- 数仓理论
- 范式理论
- 关系建模与维度建模
- 维度表和事实表(重点)
- 维度模型分类
- 数据仓库建模(绝对重点)
- ODS层
- DIM层和DWD层
- DWS层与DWT层
- ADS层
- 数仓环境搭建
- Hive环境搭建
- Hive安装
- Hive引擎介绍
- Hive on Spark配置
- Hive on Spark测试
- Yarn配置
- 数仓开发环境
- 数据准备
- 数仓搭建-ODS层
- ODS层(用户行为数据)
- 创建日志表ods_log
- Shell中单引号和双引号区别
- ODS层日志表加载数据脚本
- ODS层(业务数据)
- 活动信息表
- 活动规则表
- 一级品类表
- 二级品类表
- 三级品类表
- 编码字典表
- 省份表
- 地区表
- 品牌表
- 购物车表
- 评论表
- 优惠券信息表
- 优惠券领用表
- 收藏表
- 订单明细表
- 订单明细活动关联表
- 订单明细优惠券关联表
- 订单表
- 退单表
- 订单状态日志表
- 支付表
- 退款表
- 商品平台属性表
- 商品(SKU)表
- 商品销售属性表
- 商品(SPU)表
- 用户表
- ODS层业务表首日数据装载脚本
- ODS层业务表每日数据装载脚本
- 数仓搭建-DIM层
- 商品维度表(全量)
- 优惠券维度表(全量)
- 活动维度表(全量)
- 地区维度表(特殊)
- 时间维度表(特殊)
- 用户维度表(拉链表)
- 拉链表概述
- 制作拉链表
- DIM层首日数据装载脚本
- DIM层每日数据装载脚本
- 数仓搭建-DWD层
- 用户行为日志
- 日志解析思路
- get_json_object函数使用
- 启动日志表
- 页面日志表
- 动作日志表
- 曝光日志表
- 错误日志表
- DWD层用户行为数据加载脚本
- 业务数据
- 评价事实表(事务型事实表)
- 订单明细事实表(事务型事实表)
- 退单事实表(事务型事实表)
- 加购事实表(周期型快照事实表,每日快照)
- 收藏事实表(周期型快照事实表,每日快照)
- 优惠券领用事实表(累积型快照事实表)
- 支付事实表(累积型快照事实表)
- 退款事实表(累积型快照事实表)
- 订单事实表(累积型快照事实表)
- DWD层业务数据首日装载脚本
- DWD层业务数据每日装载脚本
- 数仓搭建-DWS层
- 系统函数
- 分区和数据装载
- 访客主题
- 用户主题
- 商品主题
- 优惠券主题
- 活动主题
- 地区主题
- DWS层首日数据装载脚本
- DWS层每日数据装载脚本
数仓分层
为什么要分层
数据分层是使用一种有效的数据组织和管理方法来让我们的数据体系更有序。数据分层并不能解决所有的数据问题,但是,数据分层却可以给我们带来如下的好处:
- 清晰数据结构:每一个数据分层都有它的作用域和职责,在使用表的时候能更方便地定位和理解
- 减少重复开发:规范数据分层,开发一些通用的中间层数据,能够减少极大的重复计算
- 统一数据口径:通过数据分层,提供统一的数据出口,统一对外输出的数据口径
- 复杂问题简单化:将一个复杂的任务分解成多个步骤来完成,每一层解决特定的问题
我们将数据模型分为三层:数据运营层( ODS )、数据仓库层(DW)和数据应用层(APP):
- ODS层存放的是接入的原始数据经;
- DW层是存放我们要重点设计的数据仓库中间层数据;
- APP是面向业务定制的应用数据。
数据运营层:ODS(Operational Data Store)
“面向主题的”数据运营层,也叫ODS层,是最接近数据源中数据的一层,数据源中的数据,经过抽取、洗净、传输,也就说传说中的 ETL 之后,装入本层。本层的数据,总体上大多是按照源头业务系统的分类方式而分类的。
一般来讲,为了考虑后续可能需要追溯数据问题,因此对于这一层就不建议做过多的数据清洗工作,原封不动地接入原始数据即可,保持数据原貌不做任何修改,保留历史数据,储存起到备份数据作用,至于数据的去噪、去重、异常值处理等过程可以放在后面的DWD层来做。
数据一般采用lzo、Snappy、parquet等压缩格式;创建分区表,防止后续的全表扫描,减少集群资源访问数仓的压力,一般按天存储在数仓中。
数据仓库层:DW(Data Warehouse)
数据仓库层是我们在做数据仓库时要核心设计的一层,在这里,从 ODS 层中获得的数据按照主题进行分流建立各种数据模型。DW层又细分为 **DWD(Data Warehouse Detail)**层、**DWM(Data WareHouse Middle)层和DWS(Data WareHouse Servce)层 **等。
维表层:DIM(Dimension)
维度层,保存维度数据,主要是对业务事实的描述信息,不适一个具体业务事实,例如何人,何时,何地等。
维表层主要包含两部分数据:
- 高基数维度数据:一般是用户资料表、商品资料表类似的资料表。数据量可能是千万级或者上亿级别;
- **低基数维度数据:一般是配置表,比如枚举值对应的中文含义,或者日期维表。**数据量可能是个位数或者几千几万。
数据明细层:DWD(Data Warehouse Detail)
DWD层:对ODS层数据进行清洗(去除空值,脏数据,超过极限范围的数据)、脱敏等。DWD层是以业务过程为驱动,按业务事实进行划分,保存业务事实明细,一行信息代表一次业务行为,例如一次下单。
该层一般保持和ODS层一样的数据粒度,并且提供一定的数据质量保证。同时,为了提高数据明细层的易用性,该层会采用一些维度退化手法,将维度退化至事实表中,减少事实表和维表的关联。
数据中间层:DWM(Data WareHouse Middle)
该层会在DWD层的数据基础上,对数据做轻度的聚合操作,生成一系列的中间表,提升公共指标的复用性,减少重复加工。
直观来讲,就是对通用的核心维度进行聚合操作,算出相应的统计指标。
- 数据生成方式:由明细层按照一定的业务需求生成轻度汇总表。明细层需要复杂清洗的数据和需要MR处理的数据也经过处理后接入到轻度汇总层。
- 日志存储方式:内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:dwb,表名:初步考虑格式为:dwb日期业务表名,待定。
- 旧数据更新方式:直接覆盖
数据服务层:DWS(Data WareHouse Servce)
又称数据集市或宽表。按照主题划分,对应着维度表,如方访客、地区、商品、用户、优惠卷等,生成字段比较多的宽表,用于提供后续的业务查询,OLAP分析,数据分发等。按天进行轻度汇总,一行信息代表一个主题对象一天的汇总行为,例如一个用户一天下单次数。
DWS层、DWT层和ADS层都是以需求为驱动,和维度建模已经没有关系了。
一般来讲,该层的数据表会相对比较少,一张表会涵盖比较多的业务内容,由于其字段较多,因此一般也会称该层的表为宽表。
在实际计算中,如果直接从DWD或者ODS计算出宽表的统计指标,会存在计算量太大并且维度太少的问题,因此一般的做法是,在DWM层先计算出多个小的中间表,然后再拼接成一张DWS的宽表。由于宽和窄的界限不易界定,也可以去掉DWM这一层,只留DWS层,将所有的数据在放在DWS亦可。
- 数据生成方式:由轻度汇总层和明细层数据计算生成。
- 日志存储方式:使用impala内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:dm,表名:初步考虑格式为:dm日期业务表名,待定。
- 旧数据更新方式:直接覆盖
主题数据层:DWT(Data WareHouse Topic)
也是构建一个宽表,只不过DWS层的粒度是对当日用户汇总信息,而DWT层是对截止到当日、或者近7日、近30日等的汇总信息。
数据应用层:APP(Application)
应用层是根据业务需要,由前面几层数据统计而出的结果,可以直接提供查询展现,或导入至Mysql中使用,也就是主要提供给数据产品和数据分析使用的数据,对各大主题指标分别进行分析。一般会存放在 ES、PostgreSql、Redis等系统中供线上系统使用,也可能会存在 Hive 或者 Druid 中供数据分析和数据挖掘使用。比如我们经常说的报表数据,一般就放在这里。
这里面也主要分两种类型:
- 每日定时任务型:比如我们典型的日计算任务,每天凌晨算前一天的数据,早上起来看报表。 这种任务经常使用 Hive、Spark 或者生撸 MR 程序来计算,最终结果写入 Hive、Hbase、Mysql、Es 或者 Redis 中。
- 实时数据:这部分主要是各种实时的系统使用,比如我们的实时推荐、实时用户画像,一般我们会用 Spark Streaming、Storm 或者 Flink 来计算,最后会落入 Es、Hbase 或者 Redis 中。
- 数据生成方式:由明细层、轻度汇总层,数据集市层生成,一般要求数据主要来源于集市层。
- 日志存储方式:使用impala内表,parquet文件格式。
- 日志删除方式:长久存储。
- 表schema:一般按天创建分区,没有时间概念的按具体业务选择分区字段。
- 库与表命名。库名:暂定apl,另外根据业务不同,不限定一定要一个库。(其实就叫app_)就好了
- 旧数据更新方式:直接覆盖。
**问:**存到 Redis、ES 中的数据算是 app层吗?
**答:**算是的,我个人的理解,app 层主要存放一些相对成熟的表,能供业务侧使用的。这些表可以在 Hive 中,也可以是从 Hive 导入 Redis 或者 ES 这种查询性能比较好的系统中。
数据集市与数据仓库概念
数据集市(Data Market),现在市面上的公司和书籍都对数据集市有不同的概念。
数据集市则是一种微型的数据仓库,它通常有更少的数据,更少的主题区域,以及更少的历史数据,因此是部门级的,一般只能为某个局部范围内的管理人员服务。
数据仓库是企业级的,能为整个企业各个部门的运行提供决策支持手段。
数据仓库是企业级的,能为整个企业各个部门的运作提供决策支持;而数据集市则是部门级的,一般只能为某个局部范围内的管理人员服务,因此也称之为部门级数据仓库。
数据集市按数据的来源分为以下两种:
- 从属数据集市:其数据直接来自于中央数据仓库。该结构能保持数据的一致性。一般为那些访问数据仓库十分频繁的关键业务部门建立从属的数据集市,能提高查询反应速度。
- 独立数据集市:独立数据集市的数据子集来源于各生产系统,许多企业在计划实施数据仓库时,往往处于投资方面的考虑,首先建成独立数据集市,用来解决个别部门较迫切的决策问题。
数据集市容易产生数据孤岛问题。
数仓命名规范
(1)表命名
- ODS层命名为ods_表名
- DIM层命名为dim_表名
- DWD层命名为dwd_表名
- DWS层命名为dws_表名
- DWT层命名为dwt_表名
- ADS层命名为ads_表名
- 临时表命名为tmp_表名
(2)脚本命名
- 数据源_to_目标_db/log.sh
- 用户行为脚本以log为后缀;业务数据脚本以db为后缀。
(3)表字段类型
- 数量类型为bigint
- 金额类型为decimal(16, 2),表示:16位有效数字,其中小数部分2位
- 字符串(名字,描述信息等)类型为string
- 主键外键类型为string
- 时间戳类型为bigint
数仓理论
范式理论
(1)范式概念
数据建模必须遵循一定的规则,在关系建模中,这种规则就是范式。
目的:采用范式,可以降低数据的冗余性。
为什么要降低数据冗余性?
- 十几年前,磁盘很贵,为了减少磁盘存储。
- 以前没有分布式系统,都是单机,只能增加磁盘,磁盘个数也是有限的
- 一次修改,需要修改多个表,很难保证数据一致性
缺点:范式的缺点是获取数据时,需要通过Join拼接出最后的数据。
分类:目前业界范式有:第一范式(1NF)、第二范式(2NF)、第三范式(3NF)、巴斯-科德范式(BCNF)、第四范式(4NF)、第五范式(5NF)。
(2)函数依赖
(3)三范式区分
关系建模与维度建模
关系建模和维度建模是两种数据仓库的建模技术。关系建模由Bill Inmon所倡导,维度建模由Ralph Kimball所倡导。
(1)关系建模
关系建模将复杂的数据抽象为两个概念——实体和关系,并使用规范化的方式表示出来。关系模型如图所示,从图中可以看出,较为松散、零碎,物理表数量多。
关系模型严格遵循第三范式(3NF),数据冗余程度低,数据的一致性容易得到保证。由于数据分布于众多的表中,查询会相对复杂,在大数据的场景下,查询效率相对较低。
(2)维度建模
维度模型如图所示,从图中可以看出,模型相对清晰、简洁。
维度模型以数据分析作为出发点,不遵循三范式,故数据存在一定的冗余。维度模型面向业务,将业务用事实表和维度表呈现出来。表结构简单,故查询简单,查询效率较高。
维度表和事实表(重点)
(1)维度表
维度表:一般是对事实的描述信息。每一张维表对应现实世界中的一个对象或者概念。 例如:用户、商品、日期、地区等。
维表的特征:
- 维表的范围很宽(具有多个属性、列比较多)
- 跟事实表相比,行数相对较小:通常< 10万条
- 内容相对固定:编码表
时间维度表:
日期ID | day of week | day of year | 季度 | 节假日 |
2020-01-01 | 2 | 1 | 1 | 元旦 |
2020-01-02 | 3 | 2 | 1 | 无 |
2020-01-03 | 4 | 3 | 1 | 无 |
2020-01-04 | 5 | 4 | 1 | 无 |
2020-01-05 | 6 | 5 | 1 | 无 |
(2)事实表
事实表中的每行数据代表一个业务事件(下单、支付、退款、评价等)。“事实”这个术语表示的是业务事件的度量值(可统计次数、个数、金额等),例如,2020年5月21日,宋宋老师在京东花了250块钱买了一瓶海狗人参丸。维度表:时间、用户、商品、商家。事实表:250块钱、一瓶。
每一个事实表的行包括:具有可加性的数值型的度量值、与维表相连接的外键,通常具有两个和两个以上的外键。
事实表的特征:
- 非常的大
- 内容相对的窄:列数较少(主要是外键id和度量值)
- 经常发生变化,每天会新增加很多。
1)事务型事实表
以每个事务或事件为单位,例如一个销售订单记录,一笔支付记录等,作为事实表里的一行数据。一旦事务被提交,事实表数据被插入,数据就不再进行更改,其更新方式为增量更新。
2)周期型快照事实表
周期型快照事实表中不会保留所有数据,只保留固定时间间隔的数据,例如每天或者每月的销售额,或每月的账户余额等。
例如购物车,有加减商品,随时都有可能变化,但是我们更关心每天结束时这里面有多少商品,方便我们后期统计分析。
3)累积型快照事实表
**累计快照事实表用于跟踪业务事实的变化。**例如,数据仓库中可能需要累积或者存储订单从下订单开始,到订单商品被打包、运输、和签收的各个业务阶段的时间点数据来跟踪订单声明周期的进展情况。当这个业务过程进行时,事实表的记录也要不断更新。
订单id | 用户id | 下单时间 | 打包时间 | 发货时间 | 签收时间 | 订单金额 |
3-8 | 3-8 | 3-9 | 3-10 |
维度模型分类
在维度建模的基础上又分为三种模型:星型模型、雪花模型、星座模型。
数据仓库建模(绝对重点)
ODS层
(1)HDFS用户行为数据
(2)HDFS业务数据
(3)针对HDFS上的用户行为数据和业务数据,我们如何规划处理?
- 保持数据原貌不做任何修改,起到备份数据的作用。
- 数据采用压缩,减少磁盘存储空间(例如:原始数据100G,可以压缩到10G左右)
- 创建分区表,防止后续的全表扫描
DIM层和DWD层
DIM层DWD层需构建维度模型,一般采用星型模型,呈现的状态一般为星座模型。
维度建模一般按照以下四个步骤:选择业务过程→声明粒度→确认维度→确认事实
(1)选择业务过程
在业务系统中,挑选我们感兴趣的业务线,比如下单业务,支付业务,退款业务,物流业务,一条业务线对应一张事实表。
(2)声明粒度
数据粒度指数据仓库的数据中保存数据的细化程度或综合程度的级别。
声明粒度意味着精确定义事实表中的一行数据表示什么,应该尽可能选择最小粒度,以此来应各种各样的需求。
典型的粒度声明如下:
- 订单事实表中一行数据表示的是一个订单中的一个商品项。
- 支付事实表中一行数据表示的是一个支付记录。
(3)确定维度
维度的主要作用是描述业务是事实,主要表示的是“谁,何处,何时”等信息。
确定维度的原则是:后续需求中是否要分析相关维度的指标。例如,需要统计,什么时间下的订单多,哪个地区下的订单多,哪个用户下的订单多。需要确定的维度就包括:时间维度、地区维度、用户维度。
(4)确定事实
此处的“事实”一词,指的是业务中的度量值(次数、个数、件数、金额,可以进行累加),例如订单金额、下单次数等。
在DWD层,以业务过程为建模驱动,基于每个具体业务过程的特点,构建最细粒度的明细层事实表。事实表可做适当的宽表化处理。
事实表和维度表的关联比较灵活,但是为了应对更复杂的业务需求,可以将能关联上的表尽量关联上。
时间 | 用户 | 地区 | 商品 | 优惠券 | 活动 | 度量值 | |
订单 | √ | √ | √ | 运费/优惠金额/原始金额/最终金额 | |||
订单详情 | √ | √ | √ | √ | √ | √ | 件数/优惠金额/原始金额/最终金额 |
支付 | √ | √ | √ | 支付金额 | |||
加购 | √ | √ | √ | 件数/金额 | |||
收藏 | √ | √ | √ | 次数 | |||
评价 | √ | √ | √ | 次数 | |||
退单 | √ | √ | √ | √ | 件数/金额 | ||
退款 | √ | √ | √ | √ | 件数/金额 | ||
优惠券领用 | √ | √ | √ | 次数 |
至此,数据仓库的维度建模已经完毕,DWD层是以业务过程为驱动。
DWS层、DWT层和ADS层都是以需求为驱动,和维度建模已经没有关系了。
DWS和DWT都是建宽表,按照主题去建表。主题相当于观察问题的角度。对应着维度表。
DWS层与DWT层
DWS层和DWT层统称宽表层,这两层的设计思想大致相同,通过以下案例进行阐述。
- 问题引出:两个需求,统计每个省份订单的个数、统计每个省份订单的总金额
- 处理办法:都是将省份表和订单表进行join,group by省份,然后计算。同样数据被计算了两次,实际上类似的场景还会更多。
那怎么设计能避免重复计算呢?
针对上述场景,可以设计一张地区宽表,其主键为地区ID,字段包含为:下单次数、下单金额、支付次数、支付金额等。上述所有指标都统一进行计算,并将结果保存在该宽表中,这样就能有效避免数据的重复计算。
总结:
- 需要建哪些宽表:以维度为基准。
- 宽表里面的字段:是站在不同维度的角度去看事实表,重点关注事实表聚合后的度量值。
- DWS和DWT层的区别:DWS层存放的所有主题对象当天的汇总行为,例如每个地区当天的下单次数,下单金额等,DWT层存放的是所有主题对象的累积行为,例如每个地区最近7天(15天、30天、60天)的下单次数、下单金额等。
ADS层
对电商系统各大主题指标分别进行分析。
数仓环境搭建
Hive环境搭建
Hive安装
详看组件安装:👉
Hive引擎介绍
Hive引擎包括:默认MR、tez、spark
Hive on Spark:Hive既作为存储元数据又负责SQL的解析优化,语法是HQL语法,执行引擎变成了Spark,Spark负责采用RDD执行。
Spark on Hive : Hive只作为存储元数据,Spark负责SQL解析优化,语法是Spark SQL语法,Spark负责采用RDD执行。
Hive on Spark配置
(1)兼容性说明
注意:官网下载的Hive3.1.2和Spark3.0.0默认是不兼容的。因为Hive3.1.2支持的Spark版本是2.4.5,所以需要我们重新编译Hive3.1.2版本。
编译步骤:官网下载Hive3.1.2源码,修改pom文件中引用的Spark版本为3.0.0,如果编译通过,直接打包获取jar包。如果报错,就根据提示,修改相关方法,直到不报错,打包获取jar包。
(2)在Hive所在节点部署Spark
如果之前已经部署了Spark,则该步骤可以跳过,但要检查SPARK_HOME的环境变量配置是否正确。
- Spark官网下载jar包地址:http://spark.apache.org/downloads.html
- 上传并解压解压spark-3.0.0-bin-hadoop3.2.tgz
[atguigu@hadoop102 software]$ tar -zxvf spark-3.0.0-bin-hadoop3.2.tgz -C /opt/module/
[atguigu@hadoop102 software]$ mv /opt/module/spark-3.0.0-bin-hadoop3.2 /opt/module/spark
- 配置SPARK_HOME环境变量
[atguigu@hadoop102 software]$ sudo vim /etc/profile.d/my_env.sh
添加如下内容:
# SPARK_HOME
export SPARK_HOME=/opt/module/spark
export PATH=$PATH:$SPARK_HOME/bin
source 使其生效:
[atguigu@hadoop102 software]$ source /etc/profile.d/my_env.sh
(3)在hive中创建spark配置文件
[atguigu@hadoop102 software]$ vim /opt/module/hive/conf/spark-defaults.conf
添加如下内容(在执行任务时,会根据如下参数执行)
spark.master yarn
spark.eventLog.enabled true
spark.eventLog.dir hdfs://hadoop102:8020/spark-history
spark.executor.memory 1g
spark.driver.memory 1g
在HDFS创建如下路径,用于存储历史日志
[atguigu@hadoop102 software]$ hadoop fs -mkdir /spark-history
(4)向HDFS上传Spark纯净版jar包
说明1:由于Spark3.0.0非纯净版默认支持的是hive2.3.7版本,直接使用会和安装的Hive3.1.2出现兼容性问题。所以采用Spark纯净版jar包,不包含hadoop和hive相关依赖,避免冲突。
说明2:Hive任务最终由Spark来执行,Spark任务资源分配由Yarn来调度,该任务有可能被分配到集群的任何一个节点。所以需要将Spark的依赖上传到HDFS集群路径,这样集群中任何一个节点都能获取到。
- 上传并解压spark-3.0.0-bin-without-hadoop.tgz
[atguigu@hadoop102 software]$ tar -zxvf /opt/software/spark-3.0.0-bin-without-hadoop.tgz
- 上传Spark纯净版jar包到HDFS
[atguigu@hadoop102 software]$ hadoop fs -mkdir /spark-jars
[atguigu@hadoop102 software]$ hadoop fs -put spark-3.0.0-bin-without-hadoop/jars/* /spark-jars
(5)修改hive-site.xml文件
[atguigu@hadoop102 ~]$ vim /opt/module/hive/conf/hive-site.xml
添加如下内容:
<!--Spark依赖位置(注意:端口号8020必须和namenode的端口号一致)-->
<property>
<name>spark.yarn.jars</name>
<value>hdfs://hadoop102:8020/spark-jars/*</value>
</property>
<!--Hive执行引擎-->
<property>
<name>hive.execution.engine</name>
<value>spark</value>
</property>
Hive on Spark测试
(1)启动hive客户端
[atguigu@hadoop102 hive]$ bin/hive
(2)创建一张测试表
hive (default)> create table student(id int, name string);
(3)通过insert测试效果
hive (default)> insert into table student values(1,'abc');
若结果如下,则说明配置成功:
Yarn配置
增加ApplicationMaster资源比例
容量调度器对每个资源队列中同时运行的Application Master占用的资源进行了限制,该限制通过yarn.scheduler.capacity.maximum-am-resource-percent参数实现,其默认值是0.1,表示每个资源队列上Application Master最多可使用的资源为该队列总资源的10%,目的是防止大部分资源都被Application Master占用,而导致Map/Reduce Task无法执行。
生产环境该参数可使用默认值。但学习环境,集群资源总数很少,如果只分配10%的资源给Application Master,则可能出现,同一时刻只能运行一个Job的情况,因为一个Application Master使用的资源就可能已经达到10%的上限了。故此处可将该值适当调大。
(1)在hadoop102的/opt/module/hadoop-3.1.3/etc/hadoop/capacity-scheduler.xml文件中修改如下参数值
[atguigu@hadoop102 hadoop]$ vim capacity-scheduler.xml
<property>
<name>yarn.scheduler.capacity.maximum-am-resource-percent</name>
<value>0.8</value>
</property
(2)分发capacity-scheduler.xml配置文件
[atguigu@hadoop102 hadoop]$ xsync capacity-scheduler.xml
(3)关闭正在运行的任务,重新启动yarn集群
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/stop-yarn.sh
[atguigu@hadoop103 hadoop-3.1.3]$ sbin/start-yarn.sh
数仓开发环境
数仓开发工具可选用DBeaver或者DataGrip。两者都需要用到JDBC协议连接到Hive,故需要启动HiveServer2。
启动HiveServer2:
[atguigu@hadoop102 hive]$ hiveserver2
配置DataGrip连接(略)
数据准备
一般企业在搭建数仓时,业务系统中会存在一定的历史数据,此处为模拟真实场景,需准备若干历史数据。假定数仓上线的日期为2020-06-14,具体说明如下。
(1)用户行为日志
用户行为日志,一般是没有历史数据的,故日志只需要准备2020-06-14一天的数据。具体操作如下:
- 启动日志采集通道,包括Flume、Kafak等
- 修改两个日志服务器(hadoop102、hadoop103)中的/opt/module/applog/application.yml配置文件,将mock.date参数改为2020-06-14。
- 执行日志生成脚本lg.sh。
- 观察HDFS是否出现相应文件。
(2)业务数据
业务数据一般存在历史数据,此处需准备2020-06-10至2020-06-14的数据。具体操作如下。
- 修改hadoop102节点上的/opt/module/db_log/application.properties文件,将mock.date、mock.clear,mock.clear.user三个参数调整为如图所示的值。
- 执行模拟生成业务数据的命令,生成第一天2020-06-10的历史数据。
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-01-22.jar
- 修改/opt/module/db_log/application.properties文件,将mock.date、mock.clear,mock.clear.user三个参数调整为如图所示的值。
- 执行模拟生成业务数据的命令,生成第二天2020-06-11的历史数据。
[atguigu@hadoop102 db_log]$ java -jar gmall2020-mock-db-2021-01-22.jar
- 之后只修改/opt/module/db_log/application.properties文件中的mock.date参数,依次改为2020-06-12,2020-06-13,2020-06-14,并分别生成对应日期的数据。
- 执行mysql_to_hdfs_init.sh脚本,将模拟生成的业务数据同步到HDFS。
[atguigu@hadoop102 bin]$ mysql_to_hdfs_init.sh all 2020-06-14
- 观察HDFS上是否出现相应的数据
数仓搭建-ODS层
- 保持数据原貌不做任何修改,起到备份数据的作用。
- 数据采用LZO压缩,减少磁盘存储空间。100G数据可以压缩到10G以内。
- 创建分区表,防止后续的全表扫描,在企业开发中大量使用分区表。
- 创建外部表。在企业开发中,除了自己用的临时表,创建内部表外,绝大多数场景都是创建外部表。
ODS层(用户行为数据)
创建日志表ods_log
(1)创建支持lzo压缩的分区表
建表语句:
drop table if exists ods_log;
CREATE EXTERNAL TABLE ods_log (`line` string)
PARTITIONED BY (`dt` string) -- 按照时间创建分区
STORED AS -- 指定存储方式,读数据采用LzoTextInputFormat;
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_log' -- 指定数据在hdfs上的存储位置
;
说明Hive的LZO压缩:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+LZO
(2)分区规划
加载数据:
load data inpath '/origin_data/gmall/log/topic_log/2020-06-14' into table ods_log partition(dt='2020-06-14');
注意:时间格式都配置成YYYY-MM-DD格式,这是Hive默认支持的时间格式
(3)为lzo压缩文件创建索引
[atguigu@hadoop102 bin]$ hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /warehouse/gmall/ods/ods_log/dt=2020-06-14
Shell中单引号和双引号区别
(1)在/home/atguigu/bin创建一个test.sh文件
[atguigu@hadoop102 bin]$ vim test.sh
在文件中添加如下内容
#!/bin/bash
do_date=$1
echo '$do_date'
echo "$do_date"
echo "'$do_date'"
echo '"$do_date"'
echo `date`
(2)查看执行结果
[atguigu@hadoop102 bin]$ test.sh 2020-06-14
$do_date
2020-06-14
'2020-06-14'
"$do_date"
2020年 06月 18日 星期四 21:02:08 CST
(3)总结:
- 单引号不取变量值
- 双引号取变量值
- 反引号`,执行引号中命令
- 双引号内部嵌套单引号,取出变量值
- 单引号内部嵌套双引号,不取出变量值
ODS层日志表加载数据脚本
(1)编写脚本
在hadoop102的/home/atguigu/bin目录下创建脚本
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_log.sh
在脚本中编写如下内容:
#!/bin/bash
# 定义变量方便修改
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$1" ] ;then
do_date=$1
else
do_date=`date -d "-1 day" +%F`
fi
echo ================== 日志日期为 $do_date ==================
sql="load data inpath '/origin_data/$APP/log/topic_log/$do_date' into table ${APP}.ods_log partition(dt='$do_date');"
hive -e "$sql"
# 创建索引
hadoop jar /opt/module/hadoop-3.1.3/share/hadoop/common/hadoop-lzo-0.4.20.jar com.hadoop.compression.lzo.DistributedLzoIndexer /warehouse/$APP/ods/ods_log/dt=$do_date
- 说明1:[ -n 变量值 ] 判断变量的值,是否为空
– 变量的值,非空,返回true
– 变量的值,为空,返回false
注意:[ -n 变量值 ]不会解析数据,使用[ -n 变量值 ]时,需要对变量加上双引号(" ") - 说明2:查看date命令的使用,date --help
(2)增加脚本执行权限
[atguigu@hadoop102 bin]$ chmod 777 hdfs_to_ods_log.sh
(3)脚本使用
执行脚本:
[atguigu@hadoop102 module]$ hdfs_to_ods_log.sh 2020-06-14
查看导入数据。
ODS层(业务数据)
ODS层业务表分区规划如下:
ODS层业务表数据装载思路如下:
活动信息表
DROP TABLE IF EXISTS ods_activity_info;
CREATE EXTERNAL TABLE ods_activity_info(
`id` STRING COMMENT '编号',
`activity_name` STRING COMMENT '活动名称',
`activity_type` STRING COMMENT '活动类型',
`start_time` STRING COMMENT '开始时间',
`end_time` STRING COMMENT '结束时间',
`create_time` STRING COMMENT '创建时间'
) COMMENT '活动信息表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_activity_info/';
活动规则表
DROP TABLE IF EXISTS ods_activity_rule;
CREATE EXTERNAL TABLE ods_activity_rule(
`id` STRING COMMENT '编号',
`activity_id` STRING COMMENT '活动ID',
`activity_type` STRING COMMENT '活动类型',
`condition_amount` DECIMAL(16,2) COMMENT '满减金额',
`condition_num` BIGINT COMMENT '满减件数',
`benefit_amount` DECIMAL(16,2) COMMENT '优惠金额',
`benefit_discount` DECIMAL(16,2) COMMENT '优惠折扣',
`benefit_level` STRING COMMENT '优惠级别'
) COMMENT '活动规则表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_activity_rule/';
一级品类表
DROP TABLE IF EXISTS ods_base_category1;
CREATE EXTERNAL TABLE ods_base_category1(
`id` STRING COMMENT 'id',
`name` STRING COMMENT '名称'
) COMMENT '商品一级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category1/';
二级品类表
DROP TABLE IF EXISTS ods_base_category2;
CREATE EXTERNAL TABLE ods_base_category2(
`id` STRING COMMENT ' id',
`name` STRING COMMENT '名称',
`category1_id` STRING COMMENT '一级品类id'
) COMMENT '商品二级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category2/';
三级品类表
DROP TABLE IF EXISTS ods_base_category3;
CREATE EXTERNAL TABLE ods_base_category3(
`id` STRING COMMENT ' id',
`name` STRING COMMENT '名称',
`category2_id` STRING COMMENT '二级品类id'
) COMMENT '商品三级分类表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_category3/';
编码字典表
DROP TABLE IF EXISTS ods_base_dic;
CREATE EXTERNAL TABLE ods_base_dic(
`dic_code` STRING COMMENT '编号',
`dic_name` STRING COMMENT '编码名称',
`parent_code` STRING COMMENT '父编码',
`create_time` STRING COMMENT '创建日期',
`operate_time` STRING COMMENT '操作日期'
) COMMENT '编码字典表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_dic/';
省份表
DROP TABLE IF EXISTS ods_base_province;
CREATE EXTERNAL TABLE ods_base_province (
`id` STRING COMMENT '编号',
`name` STRING COMMENT '省份名称',
`region_id` STRING COMMENT '地区ID',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT 'ISO-3166编码,供可视化使用',
`iso_3166_2` STRING COMMENT 'IOS-3166-2编码,供可视化使用'
) COMMENT '省份表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_province/';
地区表
DROP TABLE IF EXISTS ods_base_region;
CREATE EXTERNAL TABLE ods_base_region (
`id` STRING COMMENT '编号',
`region_name` STRING COMMENT '地区名称'
) COMMENT '地区表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_region/';
品牌表
DROP TABLE IF EXISTS ods_base_trademark;
CREATE EXTERNAL TABLE ods_base_trademark (
`id` STRING COMMENT '编号',
`tm_name` STRING COMMENT '品牌名称'
) COMMENT '品牌表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_base_trademark/';
购物车表
DROP TABLE IF EXISTS ods_cart_info;
CREATE EXTERNAL TABLE ods_cart_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`cart_price` DECIMAL(16,2) COMMENT '放入购物车时价格',
`sku_num` BIGINT COMMENT '数量',
`sku_name` STRING COMMENT 'sku名称 (冗余)',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '修改时间',
`is_ordered` STRING COMMENT '是否已经下单',
`order_time` STRING COMMENT '下单时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号'
) COMMENT '加购表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_cart_info/';
评论表
DROP TABLE IF EXISTS ods_comment_info;
CREATE EXTERNAL TABLE ods_comment_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品sku',
`spu_id` STRING COMMENT '商品spu',
`order_id` STRING COMMENT '订单ID',
`appraise` STRING COMMENT '评价',
`create_time` STRING COMMENT '评价时间'
) COMMENT '商品评论表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_comment_info/';
优惠券信息表
DROP TABLE IF EXISTS ods_coupon_info;
CREATE EXTERNAL TABLE ods_coupon_info(
`id` STRING COMMENT '购物券编号',
`coupon_name` STRING COMMENT '购物券名称',
`coupon_type` STRING COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` DECIMAL(16,2) COMMENT '满额数',
`condition_num` BIGINT COMMENT '满件数',
`activity_id` STRING COMMENT '活动编号',
`benefit_amount` DECIMAL(16,2) COMMENT '减金额',
`benefit_discount` DECIMAL(16,2) COMMENT '折扣',
`create_time` STRING COMMENT '创建时间',
`range_type` STRING COMMENT '范围类型 1、商品 2、品类 3、品牌',
`limit_num` BIGINT COMMENT '最多领用次数',
`taken_count` BIGINT COMMENT '已领用次数',
`start_time` STRING COMMENT '开始领取时间',
`end_time` STRING COMMENT '结束领取时间',
`operate_time` STRING COMMENT '修改时间',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_coupon_info/';
优惠券领用表
DROP TABLE IF EXISTS ods_coupon_use;
CREATE EXTERNAL TABLE ods_coupon_use(
`id` STRING COMMENT '编号',
`coupon_id` STRING COMMENT '优惠券ID',
`user_id` STRING COMMENT 'skuid',
`order_id` STRING COMMENT 'spuid',
`coupon_status` STRING COMMENT '优惠券状态',
`get_time` STRING COMMENT '领取时间',
`using_time` STRING COMMENT '使用时间(下单)',
`used_time` STRING COMMENT '使用时间(支付)',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_coupon_use/';
收藏表
DROP TABLE IF EXISTS ods_favor_info;
CREATE EXTERNAL TABLE ods_favor_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`spu_id` STRING COMMENT 'spuid',
`is_cancel` STRING COMMENT '是否取消',
`create_time` STRING COMMENT '收藏时间',
`cancel_time` STRING COMMENT '取消时间'
) COMMENT '商品收藏表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_favor_info/';
订单明细表
DROP TABLE IF EXISTS ods_order_detail;
CREATE EXTERNAL TABLE ods_order_detail(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`sku_id` STRING COMMENT '商品id',
`sku_name` STRING COMMENT '商品名称',
`order_price` DECIMAL(16,2) COMMENT '商品价格',
`sku_num` BIGINT COMMENT '商品数量',
`create_time` STRING COMMENT '创建时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`split_final_amount` DECIMAL(16,2) COMMENT '分摊最终金额',
`split_activity_amount` DECIMAL(16,2) COMMENT '分摊活动优惠',
`split_coupon_amount` DECIMAL(16,2) COMMENT '分摊优惠券优惠'
) COMMENT '订单详情表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail/';
订单明细活动关联表
DROP TABLE IF EXISTS ods_order_detail_activity;
CREATE EXTERNAL TABLE ods_order_detail_activity(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`order_detail_id` STRING COMMENT '订单明细id',
`activity_id` STRING COMMENT '活动id',
`activity_rule_id` STRING COMMENT '活动规则id',
`sku_id` BIGINT COMMENT '商品id',
`create_time` STRING COMMENT '创建时间'
) COMMENT '订单详情活动关联表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail_activity/';
订单明细优惠券关联表
DROP TABLE IF EXISTS ods_order_detail_coupon;
CREATE EXTERNAL TABLE ods_order_detail_coupon(
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单号',
`order_detail_id` STRING COMMENT '订单明细id',
`coupon_id` STRING COMMENT '优惠券id',
`coupon_use_id` STRING COMMENT '优惠券领用记录id',
`sku_id` STRING COMMENT '商品id',
`create_time` STRING COMMENT '创建时间'
) COMMENT '订单详情活动关联表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_detail_coupon/';
订单表
DROP TABLE IF EXISTS ods_order_info;
CREATE EXTERNAL TABLE ods_order_info (
`id` STRING COMMENT '订单号',
`final_amount` DECIMAL(16,2) COMMENT '订单最终金额',
`order_status` STRING COMMENT '订单状态',
`user_id` STRING COMMENT '用户id',
`payment_way` STRING COMMENT '支付方式',
`delivery_address` STRING COMMENT '送货地址',
`out_trade_no` STRING COMMENT '支付流水号',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间',
`expire_time` STRING COMMENT '过期时间',
`tracking_no` STRING COMMENT '物流单编号',
`province_id` STRING COMMENT '省份ID',
`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免金额',
`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免金额',
`original_amount` DECIMAL(16,2) COMMENT '订单原价金额',
`feight_fee` DECIMAL(16,2) COMMENT '运费',
`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免'
) COMMENT '订单表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_info/';
退单表
DROP TABLE IF EXISTS ods_order_refund_info;
CREATE EXTERNAL TABLE ods_order_refund_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单ID',
`sku_id` STRING COMMENT '商品ID',
`refund_type` STRING COMMENT '退单类型',
`refund_num` BIGINT COMMENT '退单件数',
`refund_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_reason_type` STRING COMMENT '退单原因类型',
`refund_status` STRING COMMENT '退单状态',--退单状态应包含买家申请、卖家审核、卖家收货、退款完成等状态。此处未涉及到,故该表按增量处理
`create_time` STRING COMMENT '退单时间'
) COMMENT '退单表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_refund_info/';
订单状态日志表
DROP TABLE IF EXISTS ods_order_status_log;
CREATE EXTERNAL TABLE ods_order_status_log (
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单ID',
`order_status` STRING COMMENT '订单状态',
`operate_time` STRING COMMENT '修改时间'
) COMMENT '订单状态表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_order_status_log/';
支付表
DROP TABLE IF EXISTS ods_payment_info;
CREATE EXTERNAL TABLE ods_payment_info(
`id` STRING COMMENT '编号',
`out_trade_no` STRING COMMENT '对外业务编号',
`order_id` STRING COMMENT '订单编号',
`user_id` STRING COMMENT '用户编号',
`payment_type` STRING COMMENT '支付类型',
`trade_no` STRING COMMENT '交易编号',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`subject` STRING COMMENT '交易内容',
`payment_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',
`callback_time` STRING COMMENT '回调时间'
) COMMENT '支付流水表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_payment_info/';
退款表
DROP TABLE IF EXISTS ods_refund_payment;
CREATE EXTERNAL TABLE ods_refund_payment(
`id` STRING COMMENT '编号',
`out_trade_no` STRING COMMENT '对外业务编号',
`order_id` STRING COMMENT '订单编号',
`sku_id` STRING COMMENT 'SKU编号',
`payment_type` STRING COMMENT '支付类型',
`trade_no` STRING COMMENT '交易编号',
`refund_amount` DECIMAL(16,2) COMMENT '支付金额',
`subject` STRING COMMENT '交易内容',
`refund_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',
`callback_time` STRING COMMENT '回调时间'
) COMMENT '支付流水表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_refund_payment/';
商品平台属性表
DROP TABLE IF EXISTS ods_sku_attr_value;
CREATE EXTERNAL TABLE ods_sku_attr_value(
`id` STRING COMMENT '编号',
`attr_id` STRING COMMENT '平台属性ID',
`value_id` STRING COMMENT '平台属性值ID',
`sku_id` STRING COMMENT '商品ID',
`attr_name` STRING COMMENT '平台属性名称',
`value_name` STRING COMMENT '平台属性值名称'
) COMMENT 'sku平台属性表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_attr_value/';
商品(SKU)表
DROP TABLE IF EXISTS ods_sku_info;
CREATE EXTERNAL TABLE ods_sku_info(
`id` STRING COMMENT 'skuId',
`spu_id` STRING COMMENT 'spuid',
`price` DECIMAL(16,2) COMMENT '价格',
`sku_name` STRING COMMENT '商品名称',
`sku_desc` STRING COMMENT '商品描述',
`weight` DECIMAL(16,2) COMMENT '重量',
`tm_id` STRING COMMENT '品牌id',
`category3_id` STRING COMMENT '品类id',
`is_sale` STRING COMMENT '是否在售',
`create_time` STRING COMMENT '创建时间'
) COMMENT 'SKU商品表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_info/';
商品销售属性表
DROP TABLE IF EXISTS ods_sku_sale_attr_value;
CREATE EXTERNAL TABLE ods_sku_sale_attr_value(
`id` STRING COMMENT '编号',
`sku_id` STRING COMMENT 'sku_id',
`spu_id` STRING COMMENT 'spu_id',
`sale_attr_value_id` STRING COMMENT '销售属性值id',
`sale_attr_id` STRING COMMENT '销售属性id',
`sale_attr_name` STRING COMMENT '销售属性名称',
`sale_attr_value_name` STRING COMMENT '销售属性值名称'
) COMMENT 'sku销售属性名称'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_sku_sale_attr_value/';
商品(SPU)表
DROP TABLE IF EXISTS ods_spu_info;
CREATE EXTERNAL TABLE ods_spu_info(
`id` STRING COMMENT 'spuid',
`spu_name` STRING COMMENT 'spu名称',
`category3_id` STRING COMMENT '品类id',
`tm_id` STRING COMMENT '品牌id'
) COMMENT 'SPU商品表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_spu_info/';
用户表
DROP TABLE IF EXISTS ods_user_info;
CREATE EXTERNAL TABLE ods_user_info(
`id` STRING COMMENT '用户id',
`login_name` STRING COMMENT '用户名称',
`nick_name` STRING COMMENT '用户昵称',
`name` STRING COMMENT '用户姓名',
`phone_num` STRING COMMENT '手机号码',
`email` STRING COMMENT '邮箱',
`user_level` STRING COMMENT '用户等级',
`birthday` STRING COMMENT '生日',
`gender` STRING COMMENT '性别',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间'
) COMMENT '用户表'
PARTITIONED BY (`dt` STRING)
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
STORED AS
INPUTFORMAT 'com.hadoop.mapred.DeprecatedLzoTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION '/warehouse/gmall/ods/ods_user_info/';
ODS层业务表首日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本hdfs_to_ods_db_init.sh:
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_db_init.sh
在脚本中填写如下内容(会装载地区表和省份表):
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
ods_order_info="
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table ${APP}.ods_order_info partition(dt='$do_date');"
ods_order_detail="
load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table ${APP}.ods_order_detail partition(dt='$do_date');"
ods_sku_info="
load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table ${APP}.ods_sku_info partition(dt='$do_date');"
ods_user_info="
load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table ${APP}.ods_user_info partition(dt='$do_date');"
ods_payment_info="
load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table ${APP}.ods_payment_info partition(dt='$do_date');"
ods_base_category1="
load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table ${APP}.ods_base_category1 partition(dt='$do_date');"
ods_base_category2="
load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table ${APP}.ods_base_category2 partition(dt='$do_date');"
ods_base_category3="
load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table ${APP}.ods_base_category3 partition(dt='$do_date'); "
ods_base_trademark="
load data inpath '/origin_data/$APP/db/base_trademark/$do_date' OVERWRITE into table ${APP}.ods_base_trademark partition(dt='$do_date'); "
ods_activity_info="
load data inpath '/origin_data/$APP/db/activity_info/$do_date' OVERWRITE into table ${APP}.ods_activity_info partition(dt='$do_date'); "
ods_cart_info="
load data inpath '/origin_data/$APP/db/cart_info/$do_date' OVERWRITE into table ${APP}.ods_cart_info partition(dt='$do_date'); "
ods_comment_info="
load data inpath '/origin_data/$APP/db/comment_info/$do_date' OVERWRITE into table ${APP}.ods_comment_info partition(dt='$do_date'); "
ods_coupon_info="
load data inpath '/origin_data/$APP/db/coupon_info/$do_date' OVERWRITE into table ${APP}.ods_coupon_info partition(dt='$do_date'); "
ods_coupon_use="
load data inpath '/origin_data/$APP/db/coupon_use/$do_date' OVERWRITE into table ${APP}.ods_coupon_use partition(dt='$do_date'); "
ods_favor_info="
load data inpath '/origin_data/$APP/db/favor_info/$do_date' OVERWRITE into table ${APP}.ods_favor_info partition(dt='$do_date'); "
ods_order_refund_info="
load data inpath '/origin_data/$APP/db/order_refund_info/$do_date' OVERWRITE into table ${APP}.ods_order_refund_info partition(dt='$do_date'); "
ods_order_status_log="
load data inpath '/origin_data/$APP/db/order_status_log/$do_date' OVERWRITE into table ${APP}.ods_order_status_log partition(dt='$do_date'); "
ods_spu_info="
load data inpath '/origin_data/$APP/db/spu_info/$do_date' OVERWRITE into table ${APP}.ods_spu_info partition(dt='$do_date'); "
ods_activity_rule="
load data inpath '/origin_data/$APP/db/activity_rule/$do_date' OVERWRITE into table ${APP}.ods_activity_rule partition(dt='$do_date');"
ods_base_dic="
load data inpath '/origin_data/$APP/db/base_dic/$do_date' OVERWRITE into table ${APP}.ods_base_dic partition(dt='$do_date'); "
ods_order_detail_activity="
load data inpath '/origin_data/$APP/db/order_detail_activity/$do_date' OVERWRITE into table ${APP}.ods_order_detail_activity partition(dt='$do_date'); "
ods_order_detail_coupon="
load data inpath '/origin_data/$APP/db/order_detail_coupon/$do_date' OVERWRITE into table ${APP}.ods_order_detail_coupon partition(dt='$do_date'); "
ods_refund_payment="
load data inpath '/origin_data/$APP/db/refund_payment/$do_date' OVERWRITE into table ${APP}.ods_refund_payment partition(dt='$do_date'); "
ods_sku_attr_value="
load data inpath '/origin_data/$APP/db/sku_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_attr_value partition(dt='$do_date'); "
ods_sku_sale_attr_value="
load data inpath '/origin_data/$APP/db/sku_sale_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_sale_attr_value partition(dt='$do_date'); "
ods_base_province="
load data inpath '/origin_data/$APP/db/base_province/$do_date' OVERWRITE into table ${APP}.ods_base_province;"
ods_base_region="
load data inpath '/origin_data/$APP/db/base_region/$do_date' OVERWRITE into table ${APP}.ods_base_region;"
case $1 in
"ods_order_info"){
hive -e "$ods_order_info"
};;
"ods_order_detail"){
hive -e "$ods_order_detail"
};;
"ods_sku_info"){
hive -e "$ods_sku_info"
};;
"ods_user_info"){
hive -e "$ods_user_info"
};;
"ods_payment_info"){
hive -e "$ods_payment_info"
};;
"ods_base_category1"){
hive -e "$ods_base_category1"
};;
"ods_base_category2"){
hive -e "$ods_base_category2"
};;
"ods_base_category3"){
hive -e "$ods_base_category3"
};;
"ods_base_trademark"){
hive -e "$ods_base_trademark"
};;
"ods_activity_info"){
hive -e "$ods_activity_info"
};;
"ods_cart_info"){
hive -e "$ods_cart_info"
};;
"ods_comment_info"){
hive -e "$ods_comment_info"
};;
"ods_coupon_info"){
hive -e "$ods_coupon_info"
};;
"ods_coupon_use"){
hive -e "$ods_coupon_use"
};;
"ods_favor_info"){
hive -e "$ods_favor_info"
};;
"ods_order_refund_info"){
hive -e "$ods_order_refund_info"
};;
"ods_order_status_log"){
hive -e "$ods_order_status_log"
};;
"ods_spu_info"){
hive -e "$ods_spu_info"
};;
"ods_activity_rule"){
hive -e "$ods_activity_rule"
};;
"ods_base_dic"){
hive -e "$ods_base_dic"
};;
"ods_order_detail_activity"){
hive -e "$ods_order_detail_activity"
};;
"ods_order_detail_coupon"){
hive -e "$ods_order_detail_coupon"
};;
"ods_refund_payment"){
hive -e "$ods_refund_payment"
};;
"ods_sku_attr_value"){
hive -e "$ods_sku_attr_value"
};;
"ods_sku_sale_attr_value"){
hive -e "$ods_sku_sale_attr_value"
};;
"ods_base_province"){
hive -e "$ods_base_province"
};;
"ods_base_region"){
hive -e "$ods_base_region"
};;
"all"){
hive -e "$ods_order_info$ods_order_detail$ods_sku_info$ods_user_info$ods_payment_info$ods_base_category1$ods_base_category2$ods_base_category3$ods_base_trademark$ods_activity_info$ods_cart_info$ods_comment_info$ods_coupon_info$ods_coupon_use$ods_favor_info$ods_order_refund_info$ods_order_status_log$ods_spu_info$ods_activity_rule$ods_base_dic$ods_order_detail_activity$ods_order_detail_coupon$ods_refund_payment$ods_sku_attr_value$ods_sku_sale_attr_value$ods_base_province$ods_base_region"
};;
esac
增加执行权限:
[atguigu@hadoop102 bin]$ chmod +x hdfs_to_ods_db_init.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ hdfs_to_ods_db_init.sh all 2020-06-14
查看数据是否导入成功。
ODS层业务表每日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本hdfs_to_ods_db.sh:
[atguigu@hadoop102 bin]$ vim hdfs_to_ods_db.sh
在脚本中填写如下内容:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
ods_order_info="
load data inpath '/origin_data/$APP/db/order_info/$do_date' OVERWRITE into table ${APP}.ods_order_info partition(dt='$do_date');"
ods_order_detail="
load data inpath '/origin_data/$APP/db/order_detail/$do_date' OVERWRITE into table ${APP}.ods_order_detail partition(dt='$do_date');"
ods_sku_info="
load data inpath '/origin_data/$APP/db/sku_info/$do_date' OVERWRITE into table ${APP}.ods_sku_info partition(dt='$do_date');"
ods_user_info="
load data inpath '/origin_data/$APP/db/user_info/$do_date' OVERWRITE into table ${APP}.ods_user_info partition(dt='$do_date');"
ods_payment_info="
load data inpath '/origin_data/$APP/db/payment_info/$do_date' OVERWRITE into table ${APP}.ods_payment_info partition(dt='$do_date');"
ods_base_category1="
load data inpath '/origin_data/$APP/db/base_category1/$do_date' OVERWRITE into table ${APP}.ods_base_category1 partition(dt='$do_date');"
ods_base_category2="
load data inpath '/origin_data/$APP/db/base_category2/$do_date' OVERWRITE into table ${APP}.ods_base_category2 partition(dt='$do_date');"
ods_base_category3="
load data inpath '/origin_data/$APP/db/base_category3/$do_date' OVERWRITE into table ${APP}.ods_base_category3 partition(dt='$do_date'); "
ods_base_trademark="
load data inpath '/origin_data/$APP/db/base_trademark/$do_date' OVERWRITE into table ${APP}.ods_base_trademark partition(dt='$do_date'); "
ods_activity_info="
load data inpath '/origin_data/$APP/db/activity_info/$do_date' OVERWRITE into table ${APP}.ods_activity_info partition(dt='$do_date'); "
ods_cart_info="
load data inpath '/origin_data/$APP/db/cart_info/$do_date' OVERWRITE into table ${APP}.ods_cart_info partition(dt='$do_date'); "
ods_comment_info="
load data inpath '/origin_data/$APP/db/comment_info/$do_date' OVERWRITE into table ${APP}.ods_comment_info partition(dt='$do_date'); "
ods_coupon_info="
load data inpath '/origin_data/$APP/db/coupon_info/$do_date' OVERWRITE into table ${APP}.ods_coupon_info partition(dt='$do_date'); "
ods_coupon_use="
load data inpath '/origin_data/$APP/db/coupon_use/$do_date' OVERWRITE into table ${APP}.ods_coupon_use partition(dt='$do_date'); "
ods_favor_info="
load data inpath '/origin_data/$APP/db/favor_info/$do_date' OVERWRITE into table ${APP}.ods_favor_info partition(dt='$do_date'); "
ods_order_refund_info="
load data inpath '/origin_data/$APP/db/order_refund_info/$do_date' OVERWRITE into table ${APP}.ods_order_refund_info partition(dt='$do_date'); "
ods_order_status_log="
load data inpath '/origin_data/$APP/db/order_status_log/$do_date' OVERWRITE into table ${APP}.ods_order_status_log partition(dt='$do_date'); "
ods_spu_info="
load data inpath '/origin_data/$APP/db/spu_info/$do_date' OVERWRITE into table ${APP}.ods_spu_info partition(dt='$do_date'); "
ods_activity_rule="
load data inpath '/origin_data/$APP/db/activity_rule/$do_date' OVERWRITE into table ${APP}.ods_activity_rule partition(dt='$do_date');"
ods_base_dic="
load data inpath '/origin_data/$APP/db/base_dic/$do_date' OVERWRITE into table ${APP}.ods_base_dic partition(dt='$do_date'); "
ods_order_detail_activity="
load data inpath '/origin_data/$APP/db/order_detail_activity/$do_date' OVERWRITE into table ${APP}.ods_order_detail_activity partition(dt='$do_date'); "
ods_order_detail_coupon="
load data inpath '/origin_data/$APP/db/order_detail_coupon/$do_date' OVERWRITE into table ${APP}.ods_order_detail_coupon partition(dt='$do_date'); "
ods_refund_payment="
load data inpath '/origin_data/$APP/db/refund_payment/$do_date' OVERWRITE into table ${APP}.ods_refund_payment partition(dt='$do_date'); "
ods_sku_attr_value="
load data inpath '/origin_data/$APP/db/sku_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_attr_value partition(dt='$do_date'); "
ods_sku_sale_attr_value="
load data inpath '/origin_data/$APP/db/sku_sale_attr_value/$do_date' OVERWRITE into table ${APP}.ods_sku_sale_attr_value partition(dt='$do_date'); "
ods_base_province="
load data inpath '/origin_data/$APP/db/base_province/$do_date' OVERWRITE into table ${APP}.ods_base_province;"
ods_base_region="
load data inpath '/origin_data/$APP/db/base_region/$do_date' OVERWRITE into table ${APP}.ods_base_region;"
case $1 in
"ods_order_info"){
hive -e "$ods_order_info"
};;
"ods_order_detail"){
hive -e "$ods_order_detail"
};;
"ods_sku_info"){
hive -e "$ods_sku_info"
};;
"ods_user_info"){
hive -e "$ods_user_info"
};;
"ods_payment_info"){
hive -e "$ods_payment_info"
};;
"ods_base_category1"){
hive -e "$ods_base_category1"
};;
"ods_base_category2"){
hive -e "$ods_base_category2"
};;
"ods_base_category3"){
hive -e "$ods_base_category3"
};;
"ods_base_trademark"){
hive -e "$ods_base_trademark"
};;
"ods_activity_info"){
hive -e "$ods_activity_info"
};;
"ods_cart_info"){
hive -e "$ods_cart_info"
};;
"ods_comment_info"){
hive -e "$ods_comment_info"
};;
"ods_coupon_info"){
hive -e "$ods_coupon_info"
};;
"ods_coupon_use"){
hive -e "$ods_coupon_use"
};;
"ods_favor_info"){
hive -e "$ods_favor_info"
};;
"ods_order_refund_info"){
hive -e "$ods_order_refund_info"
};;
"ods_order_status_log"){
hive -e "$ods_order_status_log"
};;
"ods_spu_info"){
hive -e "$ods_spu_info"
};;
"ods_activity_rule"){
hive -e "$ods_activity_rule"
};;
"ods_base_dic"){
hive -e "$ods_base_dic"
};;
"ods_order_detail_activity"){
hive -e "$ods_order_detail_activity"
};;
"ods_order_detail_coupon"){
hive -e "$ods_order_detail_coupon"
};;
"ods_refund_payment"){
hive -e "$ods_refund_payment"
};;
"ods_sku_attr_value"){
hive -e "$ods_sku_attr_value"
};;
"ods_sku_sale_attr_value"){
hive -e "$ods_sku_sale_attr_value"
};;
"all"){
hive -e "$ods_order_info$ods_order_detail$ods_sku_info$ods_user_info$ods_payment_info$ods_base_category1$ods_base_category2$ods_base_category3$ods_base_trademark$ods_activity_info$ods_cart_info$ods_comment_info$ods_coupon_info$ods_coupon_use$ods_favor_info$ods_order_refund_info$ods_order_status_log$ods_spu_info$ods_activity_rule$ods_base_dic$ods_order_detail_activity$ods_order_detail_coupon$ods_refund_payment$ods_sku_attr_value$ods_sku_sale_attr_value"
};;
esac
修改权限:
[atguigu@hadoop102 bin]$ chmod +x hdfs_to_ods_db.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ hdfs_to_ods_db.sh all 2020-06-14
查看数据是否导入成功。
数仓搭建-DIM层
商品维度表(全量)
(1)建表语句
DROP TABLE IF EXISTS dim_sku_info;
CREATE EXTERNAL TABLE dim_sku_info (
`id` STRING COMMENT '商品id',
`price` DECIMAL(16,2) COMMENT '商品价格',
`sku_name` STRING COMMENT '商品名称',
`sku_desc` STRING COMMENT '商品描述',
`weight` DECIMAL(16,2) COMMENT '重量',
`is_sale` BOOLEAN COMMENT '是否在售',
`spu_id` STRING COMMENT 'spu编号',
`spu_name` STRING COMMENT 'spu名称',
`category3_id` STRING COMMENT '三级分类id',
`category3_name` STRING COMMENT '三级分类名称',
`category2_id` STRING COMMENT '二级分类id',
`category2_name` STRING COMMENT '二级分类名称',
`category1_id` STRING COMMENT '一级分类id',
`category1_name` STRING COMMENT '一级分类名称',
`tm_id` STRING COMMENT '品牌id',
`tm_name` STRING COMMENT '品牌名称',
`sku_attr_values` ARRAY<STRUCT<attr_id:STRING,value_id:STRING,attr_name:STRING,value_name:STRING>> COMMENT '平台属性',
`sku_sale_attr_values` ARRAY<STRUCT<sale_attr_id:STRING,sale_attr_value_id:STRING,sale_attr_name:STRING,sale_attr_value_name:STRING>> COMMENT '销售属性',
`create_time` STRING COMMENT '创建时间'
) COMMENT '商品维度表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_sku_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
1)Hive读取索引文件问题
- 两种方式,分别查询数据有多少行
hive (gmall)> select * from ods_log;
Time taken: 0.706 seconds, Fetched: 2955 row(s)
hive (gmall)> select count(*) from ods_log;
2959
- 两次查询结果不一致
原因是 select * from ods_log不执行MR操作,直接采用的是ods_log建表语句中指定的DeprecatedLzoTextInputFormat,能够识别lzo.index为索引文件。
select count(*) from ods_log执行MR操作,会先经过hive.input.format,其默认值为CombineHiveInputFormat,其会先将索引文件当成小文件合并,将其当做普通文件处理。更严重的是,这会导致LZO文件无法切片。
hive (gmall)> hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat;
解决办法:修改CombineHiveInputFormat为HiveInputFormat
hive (gmall)> set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
2)首日装载
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ods_sku_info
where dt='2020-06-14'
),
spu as
(
select
id,
spu_name
from ods_spu_info
where dt='2020-06-14'
),
c3 as
(
select
id,
name,
category2_id
from ods_base_category3
where dt='2020-06-14'
),
c2 as
(
select
id,
name,
category1_id
from ods_base_category2
where dt='2020-06-14'
),
c1 as
(
select
id,
name
from ods_base_category1
where dt='2020-06-14'
),
tm as
(
select
id,
tm_name
from ods_base_trademark
where dt='2020-06-14'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value
where dt='2020-06-14'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ods_sku_sale_attr_value
where dt='2020-06-14'
group by sku_id
)
insert overwrite table dim_sku_info partition(dt='2020-06-14')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
3)每日装载
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ods_sku_info
where dt='2020-06-15'
),
spu as
(
select
id,
spu_name
from ods_spu_info
where dt='2020-06-15'
),
c3 as
(
select
id,
name,
category2_id
from ods_base_category3
where dt='2020-06-15'
),
c2 as
(
select
id,
name,
category1_id
from ods_base_category2
where dt='2020-06-15'
),
c1 as
(
select
id,
name
from ods_base_category1
where dt='2020-06-15'
),
tm as
(
select
id,
tm_name
from ods_base_trademark
where dt='2020-06-15'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ods_sku_attr_value
where dt='2020-06-15'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ods_sku_sale_attr_value
where dt='2020-06-15'
group by sku_id
)
insert overwrite table dim_sku_info partition(dt='2020-06-15')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
优惠券维度表(全量)
(1)建表语句
DROP TABLE IF EXISTS dim_coupon_info;
CREATE EXTERNAL TABLE dim_coupon_info(
`id` STRING COMMENT '购物券编号',
`coupon_name` STRING COMMENT '购物券名称',
`coupon_type` STRING COMMENT '购物券类型 1 现金券 2 折扣券 3 满减券 4 满件打折券',
`condition_amount` DECIMAL(16,2) COMMENT '满额数',
`condition_num` BIGINT COMMENT '满件数',
`activity_id` STRING COMMENT '活动编号',
`benefit_amount` DECIMAL(16,2) COMMENT '减金额',
`benefit_discount` DECIMAL(16,2) COMMENT '折扣',
`create_time` STRING COMMENT '创建时间',
`range_type` STRING COMMENT '范围类型 1、商品 2、品类 3、品牌',
`limit_num` BIGINT COMMENT '最多领取次数',
`taken_count` BIGINT COMMENT '已领取次数',
`start_time` STRING COMMENT '可以领取的开始日期',
`end_time` STRING COMMENT '可以领取的结束日期',
`operate_time` STRING COMMENT '修改时间',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券维度表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_coupon_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
1)首日装载
insert overwrite table dim_coupon_info partition(dt='2020-06-14')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-06-14';
2)每日装载
insert overwrite table dim_coupon_info partition(dt='2020-06-15')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ods_coupon_info
where dt='2020-06-15';
活动维度表(全量)
(1)建表语句
DROP TABLE IF EXISTS dim_activity_rule_info;
CREATE EXTERNAL TABLE dim_activity_rule_info(
`activity_rule_id` STRING COMMENT '活动规则ID',
`activity_id` STRING COMMENT '活动ID',
`activity_name` STRING COMMENT '活动名称',
`activity_type` STRING COMMENT '活动类型',
`start_time` STRING COMMENT '开始时间',
`end_time` STRING COMMENT '结束时间',
`create_time` STRING COMMENT '创建时间',
`condition_amount` DECIMAL(16,2) COMMENT '满减金额',
`condition_num` BIGINT COMMENT '满减件数',
`benefit_amount` DECIMAL(16,2) COMMENT '优惠金额',
`benefit_discount` DECIMAL(16,2) COMMENT '优惠折扣',
`benefit_level` STRING COMMENT '优惠级别'
) COMMENT '活动信息表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_activity_rule_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
1)首日装载
insert overwrite table dim_activity_rule_info partition(dt='2020-06-14')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ods_activity_rule
where dt='2020-06-14'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ods_activity_info
where dt='2020-06-14'
)ai
on ar.activity_id=ai.id;
2)每日装载
insert overwrite table dim_activity_rule_info partition(dt='2020-06-15')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ods_activity_rule
where dt='2020-06-15'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ods_activity_info
where dt='2020-06-15'
)ai
on ar.activity_id=ai.id;
地区维度表(特殊)
(1)建表语句
DROP TABLE IF EXISTS dim_base_province;
CREATE EXTERNAL TABLE dim_base_province (
`id` STRING COMMENT 'id',
`province_name` STRING COMMENT '省市名称',
`area_code` STRING COMMENT '地区编码',
`iso_code` STRING COMMENT 'ISO-3166编码,供可视化使用',
`iso_3166_2` STRING COMMENT 'IOS-3166-2编码,供可视化使用',
`region_id` STRING COMMENT '地区id',
`region_name` STRING COMMENT '地区名称'
) COMMENT '地区维度表'
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_base_province/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
地区维度表数据相对稳定,变化概率较低,故无需每日装载。
insert overwrite table dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
br.region_name
from ods_base_province bp
join ods_base_region br on bp.region_id = br.id;
时间维度表(特殊)
(1)建表语句
DROP TABLE IF EXISTS dim_date_info;
CREATE EXTERNAL TABLE dim_date_info(
`date_id` STRING COMMENT '日',
`week_id` STRING COMMENT '周ID',
`week_day` STRING COMMENT '周几',
`day` STRING COMMENT '每月的第几天',
`month` STRING COMMENT '第几月',
`quarter` STRING COMMENT '第几季度',
`year` STRING COMMENT '年',
`is_workday` STRING COMMENT '是否是工作日',
`holiday_id` STRING COMMENT '节假日'
) COMMENT '时间维度表'
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_date_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
通常情况下,时间维度表的数据并不是来自于业务系统,而是手动写入,并且由于时间维度表数据的可预见性,无须每日导入,一般可一次性导入一年的数据。
- 创建临时表
DROP TABLE IF EXISTS tmp_dim_date_info;
CREATE EXTERNAL TABLE tmp_dim_date_info (
`date_id` STRING COMMENT '日',
`week_id` STRING COMMENT '周ID',
`week_day` STRING COMMENT '周几',
`day` STRING COMMENT '每月的第几天',
`month` STRING COMMENT '第几月',
`quarter` STRING COMMENT '第几季度',
`year` STRING COMMENT '年',
`is_workday` STRING COMMENT '是否是工作日',
`holiday_id` STRING COMMENT '节假日'
) COMMENT '时间维度表'
ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'
LOCATION '/warehouse/gmall/tmp/tmp_dim_date_info/';
- 将数据文件上传到HFDS上临时表指定路径/warehouse/gmall/tmp/tmp_dim_date_info/,示例:
2020-01-01 1 3 1 1 1 2020 0 元旦
2020-01-02 1 4 2 1 1 2020 1 \N
2020-01-03 1 5 3 1 1 2020 1 \N
2020-01-04 1 6 4 1 1 2020 0 \N
2020-01-05 1 7 5 1 1 2020 0 \N
2020-01-06 2 1 6 1 1 2020 1 \N
2020-01-07 2 2 7 1 1 2020 1 \N
2020-01-08 2 3 8 1 1 2020 1 \N
2020-01-09 2 4 9 1 1 2020 1 \N
2020-01-10 2 5 10 1 1 2020 1 \N
2020-01-11 2 6 11 1 1 2020 0 \N
2020-01-12 2 7 12 1 1 2020 0 \N
2020-01-13 3 1 13 1 1 2020 1 \N
- 执行以下语句将其导入时间维度表
insert overwrite table dim_date_info select * from tmp_dim_date_info;
- 检查数据是否导入成功
select * from dim_date_info;
用户维度表(拉链表)
拉链表概述
拉链表,记录每条信息的生命周期,一旦一条记录的生命周期结束,就重新开始一条新的记录,并把当前日期放入生效开始日期。
如果当前信息至今有效,在生效结束日期中填人一个极大值(如9999-99-99)。
拉链表适合于:数据会发生变化,但是变化频率并不高的维度(即:缓慢变化维)。
比如:用户信息会发生变化,但是每天变化的比例不高。如果数据量有一定规模,按照每日全量的方式保存效率很低。比如:1亿用户*365天,每天一份用户信息。(做每日全量效率低)
如何使用拉链表?
通过,生效开始日期<=某个日期 且 生效结束日期>=某个日期,能够得到某个时间点的数据全量切片。
拉链表形成过程:
制作拉链表
(1)建表语句
DROP TABLE IF EXISTS dim_user_info;
CREATE EXTERNAL TABLE dim_user_info(
`id` STRING COMMENT '用户id',
`login_name` STRING COMMENT '用户名称',
`nick_name` STRING COMMENT '用户昵称',
`name` STRING COMMENT '用户姓名',
`phone_num` STRING COMMENT '手机号码',
`email` STRING COMMENT '邮箱',
`user_level` STRING COMMENT '用户等级',
`birthday` STRING COMMENT '生日',
`gender` STRING COMMENT '性别',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '操作时间',
`start_date` STRING COMMENT '开始日期',
`end_date` STRING COMMENT '结束日期'
) COMMENT '用户表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dim/dim_user_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
1)首日装载
拉链表首日装载,需要进行初始化操作,具体工作为将截止到初始化当日的全部历史用户导入一次性导入到拉链表中。目前的ods_user_info表的第一个分区,即2020-06-14分区中就是全部的历史用户,故将该分区数据进行一定处理后导入拉链表的9999-99-99分区即可。
insert overwrite table dim_user_info partition(dt='9999-99-99')
select
id,
login_name,
nick_name,
md5(name),
md5(phone_num),
md5(email),
user_level,
birthday,
gender,
create_time,
operate_time,
'2020-06-14',
'9999-99-99'
from ods_user_info
where dt='2020-06-14';
2)每日装载
with
tmp as
(
select
old.id old_id,
old.login_name old_login_name,
old.nick_name old_nick_name,
old.name old_name,
old.phone_num old_phone_num,
old.email old_email,
old.user_level old_user_level,
old.birthday old_birthday,
old.gender old_gender,
old.create_time old_create_time,
old.operate_time old_operate_time,
old.start_date old_start_date,
old.end_date old_end_date,
new.id new_id,
new.login_name new_login_name,
new.nick_name new_nick_name,
new.name new_name,
new.phone_num new_phone_num,
new.email new_email,
new.user_level new_user_level,
new.birthday new_birthday,
new.gender new_gender,
new.create_time new_create_time,
new.operate_time new_operate_time,
new.start_date new_start_date,
new.end_date new_end_date
from
(
select
id,
login_name,
nick_name,
name,
phone_num,
email,
user_level,
birthday,
gender,
create_time,
operate_time,
start_date,
end_date
from dim_user_info
where dt='9999-99-99'
)old
full outer join
(
select
id,
login_name,
nick_name,
md5(name) name,
md5(phone_num) phone_num,
md5(email) email,
user_level,
birthday,
gender,
create_time,
operate_time,
'2020-06-15' start_date,
'9999-99-99' end_date
from ods_user_info
where dt='2020-06-15'
)new
on old.id=new.id
)
insert overwrite table dim_user_info partition(dt)
select
nvl(new_id,old_id),
nvl(new_login_name,old_login_name),
nvl(new_nick_name,old_nick_name),
nvl(new_name,old_name),
nvl(new_phone_num,old_phone_num),
nvl(new_email,old_email),
nvl(new_user_level,old_user_level),
nvl(new_birthday,old_birthday),
nvl(new_gender,old_gender),
nvl(new_create_time,old_create_time),
nvl(new_operate_time,old_operate_time),
nvl(new_start_date,old_start_date),
nvl(new_end_date,old_end_date),
nvl(new_end_date,old_end_date) dt
from tmp
union all
select
old_id,
old_login_name,
old_nick_name,
old_name,
old_phone_num,
old_email,
old_user_level,
old_birthday,
old_gender,
old_create_time,
old_operate_time,
old_start_date,
cast(date_add('2020-06-15',-1) as string),
cast(date_add('2020-06-15',-1) as string) dt
from tmp
where new_id is not null and old_id is not null;
DIM层首日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本ods_to_dim_db_init.sh:
[atguigu@hadoop102 bin]$ vim ods_to_dim_db_init.sh
在脚本中填写如下内容:
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dim_user_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_user_info partition(dt='9999-99-99')
select
id,
login_name,
nick_name,
md5(name),
md5(phone_num),
md5(email),
user_level,
birthday,
gender,
create_time,
operate_time,
'$do_date',
'9999-99-99'
from ${APP}.ods_user_info
where dt='$do_date';
"
dim_sku_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ${APP}.ods_sku_info
where dt='$do_date'
),
spu as
(
select
id,
spu_name
from ${APP}.ods_spu_info
where dt='$do_date'
),
c3 as
(
select
id,
name,
category2_id
from ${APP}.ods_base_category3
where dt='$do_date'
),
c2 as
(
select
id,
name,
category1_id
from ${APP}.ods_base_category2
where dt='$do_date'
),
c1 as
(
select
id,
name
from ${APP}.ods_base_category1
where dt='$do_date'
),
tm as
(
select
id,
tm_name
from ${APP}.ods_base_trademark
where dt='$do_date'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ${APP}.ods_sku_attr_value
where dt='$do_date'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ${APP}.ods_sku_sale_attr_value
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dim_sku_info partition(dt='$do_date')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"
dim_base_province="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
br.region_name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br on bp.region_id = br.id;
"
dim_coupon_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_coupon_info partition(dt='$do_date')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';
"
dim_activity_rule_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_activity_rule_info partition(dt='$do_date')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ${APP}.ods_activity_rule
where dt='$do_date'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ${APP}.ods_activity_info
where dt='$do_date'
)ai
on ar.activity_id=ai.id;
"
case $1 in
"dim_user_info"){
hive -e "$dim_user_info"
};;
"dim_sku_info"){
hive -e "$dim_sku_info"
};;
"dim_base_province"){
hive -e "$dim_base_province"
};;
"dim_coupon_info"){
hive -e "$dim_coupon_info"
};;
"dim_activity_rule_info"){
hive -e "$dim_activity_rule_info"
};;
"all"){
hive -e "$dim_user_info$dim_sku_info$dim_coupon_info$dim_activity_rule_info$dim_base_province"
};;
esac
增加执行权限:
[atguigu@hadoop102 bin]$ chmod +x ods_to_dim_db_init.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ ods_to_dim_db_init.sh all 2020-06-14
注意:该脚本不包含时间维度表的装载,时间维度表需手动装载数据,参考5.5节。
查看数据是否导入成功。
DIM层每日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本ods_to_dim_db.sh
[atguigu@hadoop102 bin]$ vim ods_to_dim_db.sh
在脚本中填写如下内容:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dim_user_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
tmp as
(
select
old.id old_id,
old.login_name old_login_name,
old.nick_name old_nick_name,
old.name old_name,
old.phone_num old_phone_num,
old.email old_email,
old.user_level old_user_level,
old.birthday old_birthday,
old.gender old_gender,
old.create_time old_create_time,
old.operate_time old_operate_time,
old.start_date old_start_date,
old.end_date old_end_date,
new.id new_id,
new.login_name new_login_name,
new.nick_name new_nick_name,
new.name new_name,
new.phone_num new_phone_num,
new.email new_email,
new.user_level new_user_level,
new.birthday new_birthday,
new.gender new_gender,
new.create_time new_create_time,
new.operate_time new_operate_time,
new.start_date new_start_date,
new.end_date new_end_date
from
(
select
id,
login_name,
nick_name,
name,
phone_num,
email,
user_level,
birthday,
gender,
create_time,
operate_time,
start_date,
end_date
from ${APP}.dim_user_info
where dt='9999-99-99'
and start_date<'$do_date'
)old
full outer join
(
select
id,
login_name,
nick_name,
md5(name) name,
md5(phone_num) phone_num,
md5(email) email,
user_level,
birthday,
gender,
create_time,
operate_time,
'$do_date' start_date,
'9999-99-99' end_date
from ${APP}.ods_user_info
where dt='$do_date'
)new
on old.id=new.id
)
insert overwrite table ${APP}.dim_user_info partition(dt)
select
nvl(new_id,old_id),
nvl(new_login_name,old_login_name),
nvl(new_nick_name,old_nick_name),
nvl(new_name,old_name),
nvl(new_phone_num,old_phone_num),
nvl(new_email,old_email),
nvl(new_user_level,old_user_level),
nvl(new_birthday,old_birthday),
nvl(new_gender,old_gender),
nvl(new_create_time,old_create_time),
nvl(new_operate_time,old_operate_time),
nvl(new_start_date,old_start_date),
nvl(new_end_date,old_end_date),
nvl(new_end_date,old_end_date) dt
from tmp
union all
select
old_id,
old_login_name,
old_nick_name,
old_name,
old_phone_num,
old_email,
old_user_level,
old_birthday,
old_gender,
old_create_time,
old_operate_time,
old_start_date,
cast(date_add('$do_date',-1) as string),
cast(date_add('$do_date',-1) as string) dt
from tmp
where new_id is not null and old_id is not null;
"
dim_sku_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
with
sku as
(
select
id,
price,
sku_name,
sku_desc,
weight,
is_sale,
spu_id,
category3_id,
tm_id,
create_time
from ${APP}.ods_sku_info
where dt='$do_date'
),
spu as
(
select
id,
spu_name
from ${APP}.ods_spu_info
where dt='$do_date'
),
c3 as
(
select
id,
name,
category2_id
from ${APP}.ods_base_category3
where dt='$do_date'
),
c2 as
(
select
id,
name,
category1_id
from ${APP}.ods_base_category2
where dt='$do_date'
),
c1 as
(
select
id,
name
from ${APP}.ods_base_category1
where dt='$do_date'
),
tm as
(
select
id,
tm_name
from ${APP}.ods_base_trademark
where dt='$do_date'
),
attr as
(
select
sku_id,
collect_set(named_struct('attr_id',attr_id,'value_id',value_id,'attr_name',attr_name,'value_name',value_name)) attrs
from ${APP}.ods_sku_attr_value
where dt='$do_date'
group by sku_id
),
sale_attr as
(
select
sku_id,
collect_set(named_struct('sale_attr_id',sale_attr_id,'sale_attr_value_id',sale_attr_value_id,'sale_attr_name',sale_attr_name,'sale_attr_value_name',sale_attr_value_name)) sale_attrs
from ${APP}.ods_sku_sale_attr_value
where dt='$do_date'
group by sku_id
)
insert overwrite table ${APP}.dim_sku_info partition(dt='$do_date')
select
sku.id,
sku.price,
sku.sku_name,
sku.sku_desc,
sku.weight,
sku.is_sale,
sku.spu_id,
spu.spu_name,
sku.category3_id,
c3.name,
c3.category2_id,
c2.name,
c2.category1_id,
c1.name,
sku.tm_id,
tm.tm_name,
attr.attrs,
sale_attr.sale_attrs,
sku.create_time
from sku
left join spu on sku.spu_id=spu.id
left join c3 on sku.category3_id=c3.id
left join c2 on c3.category2_id=c2.id
left join c1 on c2.category1_id=c1.id
left join tm on sku.tm_id=tm.id
left join attr on sku.id=attr.sku_id
left join sale_attr on sku.id=sale_attr.sku_id;
"
dim_base_province="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_base_province
select
bp.id,
bp.name,
bp.area_code,
bp.iso_code,
bp.iso_3166_2,
bp.region_id,
bp.name
from ${APP}.ods_base_province bp
join ${APP}.ods_base_region br on bp.region_id = br.id;
"
dim_coupon_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_coupon_info partition(dt='$do_date')
select
id,
coupon_name,
coupon_type,
condition_amount,
condition_num,
activity_id,
benefit_amount,
benefit_discount,
create_time,
range_type,
limit_num,
taken_count,
start_time,
end_time,
operate_time,
expire_time
from ${APP}.ods_coupon_info
where dt='$do_date';
"
dim_activity_rule_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dim_activity_rule_info partition(dt='$do_date')
select
ar.id,
ar.activity_id,
ai.activity_name,
ar.activity_type,
ai.start_time,
ai.end_time,
ai.create_time,
ar.condition_amount,
ar.condition_num,
ar.benefit_amount,
ar.benefit_discount,
ar.benefit_level
from
(
select
id,
activity_id,
activity_type,
condition_amount,
condition_num,
benefit_amount,
benefit_discount,
benefit_level
from ${APP}.ods_activity_rule
where dt='$do_date'
)ar
left join
(
select
id,
activity_name,
start_time,
end_time,
create_time
from ${APP}.ods_activity_info
where dt='$do_date'
)ai
on ar.activity_id=ai.id;
"
case $1 in
"dim_user_info"){
hive -e "$dim_user_info"
};;
"dim_sku_info"){
hive -e "$dim_sku_info"
};;
"dim_base_province"){
hive -e "$dim_base_province"
};;
"dim_coupon_info"){
hive -e "$dim_coupon_info"
};;
"dim_activity_rule_info"){
hive -e "$dim_activity_rule_info"
};;
"all"){
hive -e "$dim_user_info$dim_sku_info$dim_coupon_info$dim_activity_rule_info"
};;
esac
增加执行权限:
[atguigu@hadoop102 bin]$ chmod +x ods_to_dim_db.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ ods_to_dim_db.sh all 2020-06-14
查看数据是否导入成功。
数仓搭建-DWD层
(1)对用户行为数据解析。
(2)对业务数据采用维度模型重新建模。
用户行为日志
日志解析思路
(1)日志结构回顾
- 页面埋点日志
- 启动日志
(2)日志解析思路
get_json_object函数使用
(1)数据
[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]
(2)取出第一个json对象
hive (gmall)>select get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]','$[0]');
结果是:{“name”:“大郎”,“sex”:“男”,“age”:“25”}
(3)取出第一个json的age字段的值
hive (gmall)>SELECT get_json_object('[{"name":"大郎","sex":"男","age":"25"},{"name":"西门庆","sex":"男","age":"47"}]',"$[0].age");
结果是:25
启动日志表
**启动日志解析思路:**启动日志表中每行数据对应一个启动记录,一个启动记录应该包含日志中的公共信息和启动信息。先将所有包含start字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
(1)建表语句
DROP TABLE IF EXISTS dwd_start_log;
CREATE EXTERNAL TABLE dwd_start_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`entry` STRING COMMENT 'icon手机图标 notice 通知 install 安装后启动',
`loading_time` BIGINT COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` BIGINT COMMENT '广告总共播放时间',
`open_ad_skip_ms` BIGINT COMMENT '用户跳过广告时点',
`ts` BIGINT COMMENT '时间'
) COMMENT '启动日志表'
PARTITIONED BY (`dt` STRING) -- 按照时间创建分区
STORED AS PARQUET -- 采用parquet列式存储
LOCATION '/warehouse/gmall/dwd/dwd_start_log' -- 指定在HDFS上存储位置
TBLPROPERTIES('parquet.compression'='lzo') -- 采用LZO压缩
;
(2)数据导入
hive (gmall)>
insert overwrite table dwd_start_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.start') is not null;
(3)查看数据
hive (gmall)> select * from dwd_start_log where dt='2020-06-14' limit 2;
页面日志表
**页面日志解析思路:**页面日志表中每行数据对应一个页面访问记录,一个页面访问记录应该包含日志中的公共信息和页面信息。先将所有包含page字段的日志过滤出来,然后使用get_json_object函数解析每个字段。
(1)建表语句
DROP TABLE IF EXISTS dwd_page_log;
CREATE EXTERNAL TABLE dwd_page_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` bigint
) COMMENT '页面日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_page_log'
TBLPROPERTIES('parquet.compression'='lzo');
(2)数据导入
hive (gmall)>
insert overwrite table dwd_page_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.page') is not null;
(3)查看数据
hive (gmall)> select * from dwd_page_log where dt='2020-06-14' limit 2;
动作日志表
**动作日志解析思路:**动作日志表中每行数据对应用户的一个动作记录,一个动作记录应当包含公共信息、页面信息以及动作信息。先将包含action字段的日志过滤出来,然后通过UDTF函数,将action数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
(1)建表语句
DROP TABLE IF EXISTS dwd_action_log;
CREATE EXTERNAL TABLE dwd_action_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT '持续时间毫秒',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面id ',
`source_type` STRING COMMENT '来源类型',
`action_id` STRING COMMENT '动作id',
`item` STRING COMMENT '目标id ',
`item_type` STRING COMMENT '目标类型',
`ts` BIGINT COMMENT '时间'
) COMMENT '动作日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_action_log'
TBLPROPERTIES('parquet.compression'='lzo');
(2)创建UDTF函数-设计思路
(3)创建UDTF函数——编写代码
- 创建一个maven工程:hivefunction
- 创建包名:com.atguigu.hive.udtf
- 引入如下依赖:
<dependencies>
<!--添加hive依赖-->
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>3.1.2</version>
</dependency>
</dependencies>
- 编码:
package com.atguigu.hive.udtf;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.json.JSONArray;
import java.util.ArrayList;
import java.util.List;
public class ExplodeJSONArray extends GenericUDTF {
@Override
public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException {
// 1 参数合法性检查
if (argOIs.length != 1) {
throw new UDFArgumentException("explode_json_array 只需要一个参数");
}
// 2 第一个参数必须为string
//判断参数是否为基础数据类型
if (argOIs[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentException("explode_json_array 只接受基础类型参数");
}
//将参数对象检查器强转为基础类型对象检查器
PrimitiveObjectInspector argumentOI = (PrimitiveObjectInspector) argOIs[0];
//判断参数是否为String类型
if (argumentOI.getPrimitiveCategory() != PrimitiveObjectInspector.PrimitiveCategory.STRING) {
throw new UDFArgumentException("explode_json_array 只接受string类型的参数");
}
// 3 定义返回值名称和类型
List<String> fieldNames = new ArrayList<String>();
List<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("items");
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames, fieldOIs);
}
public void process(Object[] objects) throws HiveException {
// 1 获取传入的数据
String jsonArray = objects[0].toString();
// 2 将string转换为json数组
JSONArray actions = new JSONArray(jsonArray);
// 3 循环一次,取出数组中的一个json,并写出
for (int i = 0; i < actions.length(); i++) {
String[] result = new String[1];
result[0] = actions.getString(i);
forward(result);
}
}
public void close() throws HiveException {
}
}
- operators
operators:即hive中的一条sql语句会被抽象为一个operators,一个operators由一些列的operator组成
operator:为一个特定的操作,完成整个数据处理的过程中的一个功能,类似于spark中的RDD算子,常见的operator有(select operator 用于选择字段、filter operator 用于过滤、join operator 用来做join操作的、group by 用来做分组操作的) - object inspector 对象检察器
hive会将一条sql抽象为一个operators,即一些列operator;
数据会按照计划依次历经每个operator的处理;
数据在前后两个operator中间传递时,数据和类型是分离的,数据会保存在Java中的object对象当中,而数据的类型会被保存在object inspector 对象检察器中,object inspector还提供了用以解析Java object对象当中所保存数据的方法。
一个自定义的UDTF函数需要继承GenericUDTF抽象类,且实现initialize(), process(),close()(可选)方法。initialize()方法会被hive调用去通知UDTF函数将要接收到的参数类型。该UDTF必须返回一个与UDTF函数输出相对应的对象检查器。一旦initialize()方法被调用,hive将通过process()方法把一行行数据传给UDTF。在process()方法中,UDTF可以通过调用forward()方法将数据传给其他的operator。最后,当把所有的数据都处理完以后hive会调用close()方法。
(4)创建函数
- 打包
- 将hivefunction-1.0-SNAPSHOT.jar上传到hadoop102的/opt/module,然后再将该jar包上传到HDFS的/user/hive/jars路径下
[atguigu@hadoop102 module]$ hadoop fs -mkdir -p /user/hive/jars
[atguigu@hadoop102 module]$ hadoop fs -put hivefunction-1.0-SNAPSHOT.jar /user/hive/jars
- 创建永久函数与开发好的java class关联
create function explode_json_array as 'com.atguigu.hive.udtf.ExplodeJSONArray' using jar 'hdfs://hadoop102:8020/user/hive/jars/hivefunction-1.0-SNAPSHOT.jar';
- 注意:如果修改了自定义函数重新生成jar包怎么处理?只需要替换HDFS路径上的旧jar包,然后重启Hive客户端即可。
(5)数据导入
insert overwrite table dwd_action_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ods_log lateral view explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='2020-06-14'
and get_json_object(line,'$.actions') is not null;
(6)查看数据
select * from dwd_action_log where dt='2020-06-14' limit 2;
曝光日志表
**曝光日志解析思路:**曝光日志表中每行数据对应一个曝光记录,一个曝光记录应当包含公共信息、页面信息以及曝光信息。先将包含display字段的日志过滤出来,然后通过UDTF函数,将display数组“炸开”(类似于explode函数的效果),然后使用get_json_object函数解析每个字段。
(1)建表语句
DROP TABLE IF EXISTS dwd_display_log;
CREATE EXTERNAL TABLE dwd_display_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`during_time` BIGINT COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`ts` BIGINT COMMENT 'app版本号',
`display_type` STRING COMMENT '曝光类型',
`item` STRING COMMENT '曝光对象id ',
`item_type` STRING COMMENT 'app版本号',
`order` BIGINT COMMENT '曝光顺序',
`pos_id` BIGINT COMMENT '曝光位置'
) COMMENT '曝光日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_display_log'
TBLPROPERTIES('parquet.compression'='lzo');
(2)数据导入
insert overwrite table dwd_display_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ods_log lateral view explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='2020-06-14'
and get_json_object(line,'$.displays') is not null;
(3)查看数据
select * from dwd_display_log where dt='2020-06-14' limit 2;
错误日志表
错误日志解析思路:错误日志表中每行数据对应一个错误记录,为方便定位错误,一个错误记录应当包含与之对应的公共信息、页面信息、曝光信息、动作信息、启动信息以及错误信息。先将包含err字段的日志过滤出来,然后使用get_json_object函数解析所有字段。
(1)建表语句
DROP TABLE IF EXISTS dwd_error_log;
CREATE EXTERNAL TABLE dwd_error_log(
`area_code` STRING COMMENT '地区编码',
`brand` STRING COMMENT '手机品牌',
`channel` STRING COMMENT '渠道',
`is_new` STRING COMMENT '是否首次启动',
`model` STRING COMMENT '手机型号',
`mid_id` STRING COMMENT '设备id',
`os` STRING COMMENT '操作系统',
`user_id` STRING COMMENT '会员id',
`version_code` STRING COMMENT 'app版本号',
`page_item` STRING COMMENT '目标id ',
`page_item_type` STRING COMMENT '目标类型',
`last_page_id` STRING COMMENT '上页类型',
`page_id` STRING COMMENT '页面ID ',
`source_type` STRING COMMENT '来源类型',
`entry` STRING COMMENT ' icon手机图标 notice 通知 install 安装后启动',
`loading_time` STRING COMMENT '启动加载时间',
`open_ad_id` STRING COMMENT '广告页ID ',
`open_ad_ms` STRING COMMENT '广告总共播放时间',
`open_ad_skip_ms` STRING COMMENT '用户跳过广告时点',
`actions` STRING COMMENT '动作',
`displays` STRING COMMENT '曝光',
`ts` STRING COMMENT '时间',
`error_code` STRING COMMENT '错误码',
`msg` STRING COMMENT '错误信息'
) COMMENT '错误日志表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_error_log'
TBLPROPERTIES('parquet.compression'='lzo');
说明:此处为对动作数组和曝光数组做处理,如需分析错误与单个动作或曝光的关联,可先使用explode_json_array函数将数组“炸开”,再使用get_json_object函数获取具体字段。
(2)数据导入
insert overwrite table dwd_error_log partition(dt='2020-06-14')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ods_log
where dt='2020-06-14'
and get_json_object(line,'$.err') is not null;
(3)查看数据
hive (gmall)> select * from dwd_error_log where dt='2020-06-14' limit 2;
DWD层用户行为数据加载脚本
(1)编写脚本
在hadoop102的/home/atguigu/bin目录下创建脚本:
[atguigu@hadoop102 bin]$ vim ods_to_dwd_log.sh
在脚本中编写如下内容:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dwd_start_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_start_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.start') is not null;"
dwd_page_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_page_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.page') is not null;"
dwd_action_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_action_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(action,'$.action_id'),
get_json_object(action,'$.item'),
get_json_object(action,'$.item_type'),
get_json_object(action,'$.ts')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.actions')) tmp as action
where dt='$do_date'
and get_json_object(line,'$.actions') is not null;"
dwd_display_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_display_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.during_time'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.ts'),
get_json_object(display,'$.display_type'),
get_json_object(display,'$.item'),
get_json_object(display,'$.item_type'),
get_json_object(display,'$.order'),
get_json_object(display,'$.pos_id')
from ${APP}.ods_log lateral view ${APP}.explode_json_array(get_json_object(line,'$.displays')) tmp as display
where dt='$do_date'
and get_json_object(line,'$.displays') is not null;"
dwd_error_log="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_error_log partition(dt='$do_date')
select
get_json_object(line,'$.common.ar'),
get_json_object(line,'$.common.ba'),
get_json_object(line,'$.common.ch'),
get_json_object(line,'$.common.is_new'),
get_json_object(line,'$.common.md'),
get_json_object(line,'$.common.mid'),
get_json_object(line,'$.common.os'),
get_json_object(line,'$.common.uid'),
get_json_object(line,'$.common.vc'),
get_json_object(line,'$.page.item'),
get_json_object(line,'$.page.item_type'),
get_json_object(line,'$.page.last_page_id'),
get_json_object(line,'$.page.page_id'),
get_json_object(line,'$.page.source_type'),
get_json_object(line,'$.start.entry'),
get_json_object(line,'$.start.loading_time'),
get_json_object(line,'$.start.open_ad_id'),
get_json_object(line,'$.start.open_ad_ms'),
get_json_object(line,'$.start.open_ad_skip_ms'),
get_json_object(line,'$.actions'),
get_json_object(line,'$.displays'),
get_json_object(line,'$.ts'),
get_json_object(line,'$.err.error_code'),
get_json_object(line,'$.err.msg')
from ${APP}.ods_log
where dt='$do_date'
and get_json_object(line,'$.err') is not null;"
case $1 in
dwd_start_log )
hive -e "$dwd_start_log"
;;
dwd_page_log )
hive -e "$dwd_page_log"
;;
dwd_action_log )
hive -e "$dwd_action_log"
;;
dwd_display_log )
hive -e "$dwd_display_log"
;;
dwd_error_log )
hive -e "$dwd_error_log"
;;
all )
hive -e "$dwd_start_log$dwd_page_log$dwd_action_log$dwd_display_log$dwd_error_log"
;;
esac
增加脚本执行权限:
[atguigu@hadoop102 bin]$ chmod 777 ods_to_dwd_log.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 module]$ ods_to_dwd_log.sh all 2020-06-14
查询导入结果。
业务数据
业务数据方面DWD层的搭建主要注意点在于维度建模。
评价事实表(事务型事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_comment_info;
CREATE EXTERNAL TABLE dwd_comment_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品sku',
`spu_id` STRING COMMENT '商品spu',
`order_id` STRING COMMENT '订单ID',
`appraise` STRING COMMENT '评价(好评、中评、差评、默认评价)',
`create_time` STRING COMMENT '评价时间'
) COMMENT '评价事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_comment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_comment_info partition (dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ods_comment_info
where dt='2020-06-14';
- 每日装载
insert overwrite table dwd_comment_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ods_comment_info where dt='2020-06-15';
订单明细事实表(事务型事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_order_detail;
CREATE EXTERNAL TABLE dwd_order_detail (
`id` STRING COMMENT '订单编号',
`order_id` STRING COMMENT '订单号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'sku商品id',
`province_id` STRING COMMENT '省份ID',
`activity_id` STRING COMMENT '活动ID',
`activity_rule_id` STRING COMMENT '活动规则ID',
`coupon_id` STRING COMMENT '优惠券ID',
`create_time` STRING COMMENT '创建时间',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`sku_num` BIGINT COMMENT '商品数量',
`original_amount` DECIMAL(16,2) COMMENT '原始价格',
`split_activity_amount` DECIMAL(16,2) COMMENT '活动优惠分摊',
`split_coupon_amount` DECIMAL(16,2) COMMENT '优惠券优惠分摊',
`split_final_amount` DECIMAL(16,2) COMMENT '最终价格分摊'
) COMMENT '订单明细事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_detail/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ods_order_detail
where dt='2020-06-14'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-14'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-14'
)odc
on od.id=odc.order_detail_id;
- 每日装载
insert overwrite table dwd_order_detail partition(dt='2020-06-15')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ods_order_detail
where dt='2020-06-15'
)od
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ods_order_detail_activity
where dt='2020-06-15'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ods_order_detail_coupon
where dt='2020-06-15'
)odc
on od.id=odc.order_detail_id;
退单事实表(事务型事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_order_refund_info;
CREATE EXTERNAL TABLE dwd_order_refund_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单ID',
`sku_id` STRING COMMENT '商品ID',
`province_id` STRING COMMENT '地区ID',
`refund_type` STRING COMMENT '退单类型',
`refund_num` BIGINT COMMENT '退单件数',
`refund_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_reason_type` STRING COMMENT '退单原因类型',
`create_time` STRING COMMENT '退单时间'
) COMMENT '退单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_refund_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ods_order_refund_info where dt='2020-06-14'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on ri.order_id=oi.id;
- 每日装载
insert overwrite table dwd_order_refund_info partition(dt='2020-06-15')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ods_order_refund_info where dt='2020-06-15'
)ri
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on ri.order_id=oi.id;
加购事实表(周期型快照事实表,每日快照)
(1)建表语句
DROP TABLE IF EXISTS dwd_cart_info;
CREATE EXTERNAL TABLE dwd_cart_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`sku_id` STRING COMMENT '商品ID',
`source_type` STRING COMMENT '来源类型',
`source_id` STRING COMMENT '来源编号',
`cart_price` DECIMAL(16,2) COMMENT '加入购物车时的价格',
`is_ordered` STRING COMMENT '是否已下单',
`create_time` STRING COMMENT '创建时间',
`operate_time` STRING COMMENT '修改时间',
`order_time` STRING COMMENT '下单时间',
`sku_num` BIGINT COMMENT '加购数量'
) COMMENT '加购事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_cart_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-14';
- 每日装载
insert overwrite table dwd_cart_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ods_cart_info
where dt='2020-06-14';
收藏事实表(周期型快照事实表,每日快照)
(1)建表语句
DROP TABLE IF EXISTS dwd_favor_info;
CREATE EXTERNAL TABLE dwd_favor_info(
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户id',
`sku_id` STRING COMMENT 'skuid',
`spu_id` STRING COMMENT 'spuid',
`is_cancel` STRING COMMENT '是否取消',
`create_time` STRING COMMENT '收藏时间',
`cancel_time` STRING COMMENT '取消时间'
) COMMENT '收藏事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_favor_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-14')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-14';
- 每日装载
insert overwrite table dwd_favor_info partition(dt='2020-06-15')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ods_favor_info
where dt='2020-06-15';
优惠券领用事实表(累积型快照事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_coupon_use;
CREATE EXTERNAL TABLE dwd_coupon_use(
`id` STRING COMMENT '编号',
`coupon_id` STRING COMMENT '优惠券ID',
`user_id` STRING COMMENT 'userid',
`order_id` STRING COMMENT '订单id',
`coupon_status` STRING COMMENT '优惠券状态',
`get_time` STRING COMMENT '领取时间',
`using_time` STRING COMMENT '使用时间(下单)',
`used_time` STRING COMMENT '使用时间(支付)',
`expire_time` STRING COMMENT '过期时间'
) COMMENT '优惠券领用事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_coupon_use/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ods_coupon_use
where dt='2020-06-14';
- 每日装载
insert overwrite table dwd_coupon_use partition(dt)
select
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ods_coupon_use
where dt='2020-06-15'
)new
on old.id=new.id;
支付事实表(累积型快照事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_payment_info;
CREATE EXTERNAL TABLE dwd_payment_info (
`id` STRING COMMENT '编号',
`order_id` STRING COMMENT '订单编号',
`user_id` STRING COMMENT '用户编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`payment_status` STRING COMMENT '支付状态',
`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间
`callback_time` STRING COMMENT '完成时间'--支付完成时间,即支付成功回调时间
) COMMENT '支付事实表表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_payment_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ods_payment_info where dt='2020-06-14'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-14'
)oi
on pi.order_id=oi.id;
- 每日装载
insert overwrite table dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ods_payment_info where dt='2020-06-15'
)pi
left join
(
select id,province_id from ods_order_info where dt='2020-06-15'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;
退款事实表(累积型快照事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_refund_payment;
CREATE EXTERNAL TABLE dwd_refund_payment (
`id` STRING COMMENT '编号',
`user_id` STRING COMMENT '用户ID',
`order_id` STRING COMMENT '订单编号',
`sku_id` STRING COMMENT 'SKU编号',
`province_id` STRING COMMENT '地区ID',
`trade_no` STRING COMMENT '交易编号',
`out_trade_no` STRING COMMENT '对外交易编号',
`payment_type` STRING COMMENT '支付类型',
`refund_amount` DECIMAL(16,2) COMMENT '退款金额',
`refund_status` STRING COMMENT '退款状态',
`create_time` STRING COMMENT '创建时间',--调用第三方支付接口的时间
`callback_time` STRING COMMENT '回调时间'--支付接口回调时间,即支付成功时间
) COMMENT '退款事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_refund_payment/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-14'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-14'
)oi
on rp.order_id=oi.id;
- 每日装载
insert overwrite table dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ods_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
id,
user_id,
province_id
from ods_order_info
where dt='2020-06-15'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;
订单事实表(累积型快照事实表)
(1)建表语句
DROP TABLE IF EXISTS dwd_order_info;
CREATE EXTERNAL TABLE dwd_order_info(
`id` STRING COMMENT '编号',
`order_status` STRING COMMENT '订单状态',
`user_id` STRING COMMENT '用户ID',
`province_id` STRING COMMENT '地区ID',
`payment_way` STRING COMMENT '支付方式',
`delivery_address` STRING COMMENT '邮寄地址',
`out_trade_no` STRING COMMENT '对外交易编号',
`tracking_no` STRING COMMENT '物流单号',
`create_time` STRING COMMENT '创建时间(未支付状态)',
`payment_time` STRING COMMENT '支付时间(已支付状态)',
`cancel_time` STRING COMMENT '取消时间(已取消状态)',
`finish_time` STRING COMMENT '完成时间(已完成状态)',
`refund_time` STRING COMMENT '退款时间(退款中状态)',
`refund_finish_time` STRING COMMENT '退款完成时间(退款完成状态)',
`expire_time` STRING COMMENT '过期时间',
`feight_fee` DECIMAL(16,2) COMMENT '运费',
`feight_fee_reduce` DECIMAL(16,2) COMMENT '运费减免',
`activity_reduce_amount` DECIMAL(16,2) COMMENT '活动减免',
`coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠券减免',
`original_amount` DECIMAL(16,2) COMMENT '订单原始价格',
`final_amount` DECIMAL(16,2) COMMENT '订单最终价格'
) COMMENT '订单事实表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dwd/dwd_order_info/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)分区规划
(3)数据装载
- 首日装载
insert overwrite table dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='2020-06-14' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ods_order_info
where dt='2020-06-14'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-14'
group by order_id
)times
on oi.id=times.order_id;
- 每日装载
insert overwrite table dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='2020-06-15' and new.refund_time is null then '2020-06-15'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ods_order_info
where dt='2020-06-15'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ods_order_status_log
where dt='2020-06-15'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;
DWD层业务数据首日装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本ods_to_dwd_db_init.sh:
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db_init.sh
在脚本中填写如下内容:
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dwd_order_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount,
case
when times.ts['1003'] is not null then date_format(times.ts['1003'],'yyyy-MM-dd')
when times.ts['1004'] is not null and date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)<='$do_date' and times.ts['1005'] is null then date_add(date_format(times.ts['1004'],'yyyy-MM-dd'),7)
when times.ts['1006'] is not null then date_format(times.ts['1006'],'yyyy-MM-dd')
when oi.expire_time is not null then date_format(oi.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id;"
dwd_order_detail="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt)
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount,
date_format(create_time,'yyyy-MM-dd')
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
pi.id,
pi.order_id,
pi.user_id,
oi.province_id,
pi.trade_no,
pi.out_trade_no,
pi.payment_type,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time,
nvl(date_format(pi.callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt)
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time,
date_format(create_time,'yyyy-MM-dd')
from ${APP}.ods_comment_info
where dt='$do_date';
"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time,
coalesce(date_format(used_time,'yyyy-MM-dd'),date_format(expire_time,'yyyy-MM-dd'),'9999-99-99')
from ${APP}.ods_coupon_use
where dt='$do_date';"
dwd_order_refund_info="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt)
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time,
date_format(ri.create_time,'yyyy-MM-dd')
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.exec.dynamic.partition.mode=nonstrict;
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time,
nvl(date_format(callback_time,'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
;;
esac
增加执行权限:
[atguigu@hadoop102 bin]$ chmod +x ods_to_dwd_db_init.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ ods_to_dwd_db_init.sh all 2020-06-14
查看数据是否导入成功。
DWD层业务数据每日装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本ods_to_dwd_db.sh:
[atguigu@hadoop102 bin]$ vim ods_to_dwd_db.sh
在脚本中填写如下内容:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
# 假设某累积型快照事实表,某天所有的业务记录全部完成,则会导致9999-99-99分区的数据未被覆盖,从而导致数据重复,该函数根据9999-99-99分区的数据的末次修改时间判断其是否被覆盖了,如果未被覆盖,就手动清理
clear_data(){
current_date=`date +%F`
current_date_timestamp=`date -d "$current_date" +%s`
last_modified_date=`hadoop fs -ls /warehouse/gmall/dwd/$1 | grep '9999-99-99' | awk '{print $6}'`
last_modified_date_timestamp=`date -d "$last_modified_date" +%s`
if [[ $last_modified_date_timestamp -lt $current_date_timestamp ]]; then
echo "clear table $1 partition(dt=9999-99-99)"
hadoop fs -rm -r -f /warehouse/gmall/dwd/$1/dt=9999-99-99/*
fi
}
dwd_order_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_order_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_status,old.order_status),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.payment_way,old.payment_way),
nvl(new.delivery_address,old.delivery_address),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.tracking_no,old.tracking_no),
nvl(new.create_time,old.create_time),
nvl(new.payment_time,old.payment_time),
nvl(new.cancel_time,old.cancel_time),
nvl(new.finish_time,old.finish_time),
nvl(new.refund_time,old.refund_time),
nvl(new.refund_finish_time,old.refund_finish_time),
nvl(new.expire_time,old.expire_time),
nvl(new.feight_fee,old.feight_fee),
nvl(new.feight_fee_reduce,old.feight_fee_reduce),
nvl(new.activity_reduce_amount,old.activity_reduce_amount),
nvl(new.coupon_reduce_amount,old.coupon_reduce_amount),
nvl(new.original_amount,old.original_amount),
nvl(new.final_amount,old.final_amount),
case
when new.cancel_time is not null then date_format(new.cancel_time,'yyyy-MM-dd')
when new.finish_time is not null and date_add(date_format(new.finish_time,'yyyy-MM-dd'),7)='$do_date' and new.refund_time is null then '$do_date'
when new.refund_finish_time is not null then date_format(new.refund_finish_time,'yyyy-MM-dd')
when new.expire_time is not null then date_format(new.expire_time,'yyyy-MM-dd')
else '9999-99-99'
end
from
(
select
id,
order_status,
user_id,
province_id,
payment_way,
delivery_address,
out_trade_no,
tracking_no,
create_time,
payment_time,
cancel_time,
finish_time,
refund_time,
refund_finish_time,
expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from ${APP}.dwd_order_info
where dt='9999-99-99'
)old
full outer join
(
select
oi.id,
oi.order_status,
oi.user_id,
oi.province_id,
oi.payment_way,
oi.delivery_address,
oi.out_trade_no,
oi.tracking_no,
oi.create_time,
times.ts['1002'] payment_time,
times.ts['1003'] cancel_time,
times.ts['1004'] finish_time,
times.ts['1005'] refund_time,
times.ts['1006'] refund_finish_time,
oi.expire_time,
feight_fee,
feight_fee_reduce,
activity_reduce_amount,
coupon_reduce_amount,
original_amount,
final_amount
from
(
select
*
from ${APP}.ods_order_info
where dt='$do_date'
)oi
left join
(
select
order_id,
str_to_map(concat_ws(',',collect_set(concat(order_status,'=',operate_time))),',','=') ts
from ${APP}.ods_order_status_log
where dt='$do_date'
group by order_id
)times
on oi.id=times.order_id
)new
on old.id=new.id;"
dwd_order_detail="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_detail partition(dt='$do_date')
select
od.id,
od.order_id,
oi.user_id,
od.sku_id,
oi.province_id,
oda.activity_id,
oda.activity_rule_id,
odc.coupon_id,
od.create_time,
od.source_type,
od.source_id,
od.sku_num,
od.order_price*od.sku_num,
od.split_activity_amount,
od.split_coupon_amount,
od.split_final_amount
from
(
select
*
from ${APP}.ods_order_detail
where dt='$do_date'
)od
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on od.order_id=oi.id
left join
(
select
order_detail_id,
activity_id,
activity_rule_id
from ${APP}.ods_order_detail_activity
where dt='$do_date'
)oda
on od.id=oda.order_detail_id
left join
(
select
order_detail_id,
coupon_id
from ${APP}.ods_order_detail_coupon
where dt='$do_date'
)odc
on od.id=odc.order_detail_id;"
dwd_payment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_payment_info partition(dt)
select
nvl(new.id,old.id),
nvl(new.order_id,old.order_id),
nvl(new.user_id,old.user_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.payment_amount,old.payment_amount),
nvl(new.payment_status,old.payment_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select id,
order_id,
user_id,
province_id,
trade_no,
out_trade_no,
payment_type,
payment_amount,
payment_status,
create_time,
callback_time
from ${APP}.dwd_payment_info
where dt = '9999-99-99'
)old
full outer join
(
select
pi.id,
pi.out_trade_no,
pi.order_id,
pi.user_id,
oi.province_id,
pi.payment_type,
pi.trade_no,
pi.payment_amount,
pi.payment_status,
pi.create_time,
pi.callback_time
from
(
select * from ${APP}.ods_payment_info where dt='$do_date'
)pi
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on pi.order_id=oi.id
)new
on old.id=new.id;"
dwd_cart_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_cart_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
source_type,
source_id,
cart_price,
is_ordered,
create_time,
operate_time,
order_time,
sku_num
from ${APP}.ods_cart_info
where dt='$do_date';"
dwd_comment_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_comment_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
order_id,
appraise,
create_time
from ${APP}.ods_comment_info where dt='$do_date';"
dwd_favor_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_favor_info partition(dt='$do_date')
select
id,
user_id,
sku_id,
spu_id,
is_cancel,
create_time,
cancel_time
from ${APP}.ods_favor_info
where dt='$do_date';"
dwd_coupon_use="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_coupon_use partition(dt)
select
nvl(new.id,old.id),
nvl(new.coupon_id,old.coupon_id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.coupon_status,old.coupon_status),
nvl(new.get_time,old.get_time),
nvl(new.using_time,old.using_time),
nvl(new.used_time,old.used_time),
nvl(new.expire_time,old.expire_time),
coalesce(date_format(nvl(new.used_time,old.used_time),'yyyy-MM-dd'),date_format(nvl(new.expire_time,old.expire_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.dwd_coupon_use
where dt='9999-99-99'
)old
full outer join
(
select
id,
coupon_id,
user_id,
order_id,
coupon_status,
get_time,
using_time,
used_time,
expire_time
from ${APP}.ods_coupon_use
where dt='$do_date'
)new
on old.id=new.id;"
dwd_order_refund_info="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
insert overwrite table ${APP}.dwd_order_refund_info partition(dt='$do_date')
select
ri.id,
ri.user_id,
ri.order_id,
ri.sku_id,
oi.province_id,
ri.refund_type,
ri.refund_num,
ri.refund_amount,
ri.refund_reason_type,
ri.create_time
from
(
select * from ${APP}.ods_order_refund_info where dt='$do_date'
)ri
left join
(
select id,province_id from ${APP}.ods_order_info where dt='$do_date'
)oi
on ri.order_id=oi.id;"
dwd_refund_payment="
set hive.input.format=org.apache.hadoop.hive.ql.io.HiveInputFormat;
set hive.exec.dynamic.partition.mode=nonstrict;
insert overwrite table ${APP}.dwd_refund_payment partition(dt)
select
nvl(new.id,old.id),
nvl(new.user_id,old.user_id),
nvl(new.order_id,old.order_id),
nvl(new.sku_id,old.sku_id),
nvl(new.province_id,old.province_id),
nvl(new.trade_no,old.trade_no),
nvl(new.out_trade_no,old.out_trade_no),
nvl(new.payment_type,old.payment_type),
nvl(new.refund_amount,old.refund_amount),
nvl(new.refund_status,old.refund_status),
nvl(new.create_time,old.create_time),
nvl(new.callback_time,old.callback_time),
nvl(date_format(nvl(new.callback_time,old.callback_time),'yyyy-MM-dd'),'9999-99-99')
from
(
select
id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.dwd_refund_payment
where dt='9999-99-99'
)old
full outer join
(
select
rp.id,
user_id,
order_id,
sku_id,
province_id,
trade_no,
out_trade_no,
payment_type,
refund_amount,
refund_status,
create_time,
callback_time
from
(
select
id,
out_trade_no,
order_id,
sku_id,
payment_type,
trade_no,
refund_amount,
refund_status,
create_time,
callback_time
from ${APP}.ods_refund_payment
where dt='$do_date'
)rp
left join
(
select
id,
user_id,
province_id
from ${APP}.ods_order_info
where dt='$do_date'
)oi
on rp.order_id=oi.id
)new
on old.id=new.id;"
case $1 in
dwd_order_info )
hive -e "$dwd_order_info"
clear_data dwd_order_info
;;
dwd_order_detail )
hive -e "$dwd_order_detail"
;;
dwd_payment_info )
hive -e "$dwd_payment_info"
clear_data dwd_payment_info
;;
dwd_cart_info )
hive -e "$dwd_cart_info"
;;
dwd_comment_info )
hive -e "$dwd_comment_info"
;;
dwd_favor_info )
hive -e "$dwd_favor_info"
;;
dwd_coupon_use )
hive -e "$dwd_coupon_use"
clear_data dwd_coupon_use
;;
dwd_order_refund_info )
hive -e "$dwd_order_refund_info"
;;
dwd_refund_payment )
hive -e "$dwd_refund_payment"
clear_data dwd_refund_payment
;;
all )
hive -e "$dwd_order_info$dwd_order_detail$dwd_payment_info$dwd_cart_info$dwd_comment_info$dwd_favor_info$dwd_coupon_use$dwd_order_refund_info$dwd_refund_payment"
clear_data dwd_order_info
clear_data dwd_payment_info
clear_data dwd_coupon_use
clear_data dwd_refund_payment
;;
esac
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ ods_to_dwd_db.sh all 2020-06-14
查看数据是否导入成功。
数仓搭建-DWS层
系统函数
(1)nvl函数
- 基本语法:NVL(表达式1,表达式2)
如果表达式1为空值,NVL返回值为表达式2的值,否则返回表达式1的值。
该函数的目的是把一个空值(null)转换成一个实际的值。其表达式的值可以是数字型、字符型和日期型。但是表达式1和表达式2的数据类型必须为同一个类型。 - 案例实操
hive (gmall)> select nvl(1,0);
1
hive (gmall)> select nvl(null,"hello");
hello
(2)日期处理函数
- date_format函数(根据格式整理日期)
hive (gmall)> select date_format('2020-06-14','yyyy-MM');
2020-06
- date_add函数(加减日期)
hive (gmall)> select date_add('2020-06-14',-1);
2020-06-13
hive (gmall)> select date_add('2020-06-14',1);
2020-06-15
- next_day函数
1)取当前天的下一个周一
hive (gmall)> select next_day('2020-06-14','MO');
2020-06-15
说明:星期一到星期日的英文(Monday,Tuesday、Wednesday、Thursday、Friday、Saturday、Sunday)
2)取当前周的周一
hive (gmall)> select date_add(next_day('2020-06-14','MO'),-7);
2020-06-8
- last_day函数(求当月最后一天日期)
hive (gmall)> select last_day('2020-06-14');
2020-06-30
(3)复杂数据类型定义
- map结构数据定义
map<string,string>
- array结构数据定
array<string>
- struct结构数据定义
struct<id:int,name:string,age:int>
- struct和array嵌套定义
array<struct<id:int,name:string,age:int>>
分区和数据装载
分区:
数据装载:
访客主题
(1)建表语句
DROP TABLE IF EXISTS dws_visitor_action_daycount;
CREATE EXTERNAL TABLE dws_visitor_action_daycount
(
`mid_id` STRING COMMENT '设备id',
`brand` STRING COMMENT '设备品牌',
`model` STRING COMMENT '设备型号',
`is_new` STRING COMMENT '是否首次访问',
`channel` ARRAY<STRING> COMMENT '渠道',
`os` ARRAY<STRING> COMMENT '操作系统',
`area_code` ARRAY<STRING> COMMENT '地区ID',
`version_code` ARRAY<STRING> COMMENT '应用版本',
`visit_count` BIGINT COMMENT '访问次数',
`page_stats` ARRAY<STRUCT<page_id:STRING,page_count:BIGINT,during_time:BIGINT>> COMMENT '页面访问统计'
) COMMENT '每日设备行为表'
PARTITIONED BY(`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_visitor_action_daycount'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
insert overwrite table dws_visitor_action_daycount partition(dt='2020-06-14')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from dwd_page_log
where dt='2020-06-14'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from dwd_page_log
where dt='2020-06-14'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;
(3)查询加载结果
用户主题
(1)建表语句
DROP TABLE IF EXISTS dws_user_action_daycount;
CREATE EXTERNAL TABLE dws_user_action_daycount
(
`user_id` STRING COMMENT '用户id',
`login_count` BIGINT COMMENT '登录次数',
`cart_count` BIGINT COMMENT '加入购物车次数',
`favor_count` BIGINT COMMENT '收藏次数',
`order_count` BIGINT COMMENT '下单次数',
`order_activity_count` BIGINT COMMENT '订单参与活动次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '订单减免金额(活动)',
`order_coupon_count` BIGINT COMMENT '订单用券次数',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '订单减免金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '订单单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '订单总金额',
`payment_count` BIGINT COMMENT '支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`refund_order_count` BIGINT COMMENT '退单次数',
`refund_order_num` BIGINT COMMENT '退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_payment_count` BIGINT COMMENT '退款次数',
`refund_payment_num` BIGINT COMMENT '退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '退款金额',
`coupon_get_count` BIGINT COMMENT '优惠券领取次数',
`coupon_using_count` BIGINT COMMENT '优惠券使用(下单)次数',
`coupon_used_count` BIGINT COMMENT '优惠券使用(支付)次数',
`appraise_good_count` BIGINT COMMENT '好评数',
`appraise_mid_count` BIGINT COMMENT '中评数',
`appraise_bad_count` BIGINT COMMENT '差评数',
`appraise_default_count` BIGINT COMMENT '默认评价数',
`order_detail_stats` array<struct<sku_id:string,sku_num:bigint,order_count:bigint,activity_reduce_amount:decimal(16,2),coupon_reduce_amount:decimal(16,2),original_amount:decimal(16,2),final_amount:decimal(16,2)>> COMMENT '下单明细统计'
) COMMENT '每日用户行为'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_user_action_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
- 首日装载
with
tmp_login as
(
select
dt,
user_id,
count(*) login_count
from dwd_page_log
where user_id is not null
and last_page_id is null
group by dt,user_id
),
tmp_cf as
(
select
dt,
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where user_id is not null
and action_id in ('cart_add','favor_add')
group by dt,user_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),user_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount,
callback_time
from dwd_refund_payment
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.user_id
),
tmp_coupon as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt) dt,
coalesce(coupon_get.user_id,coupon_using.user_id,coupon_used.user_id) user_id,
nvl(coupon_get_count,0) coupon_get_count,
nvl(coupon_using_count,0) coupon_using_count,
nvl(coupon_used_count,0) coupon_used_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_get_count
from dwd_coupon_use
where get_time is not null
group by user_id,date_format(get_time,'yyyy-MM-dd')
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_using_count
from dwd_coupon_use
where using_time is not null
group by user_id,date_format(using_time,'yyyy-MM-dd')
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.user_id=coupon_using.user_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_used_count
from dwd_coupon_use
where used_time is not null
group by user_id,date_format(used_time,'yyyy-MM-dd')
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.user_id,coupon_using.user_id)=coupon_used.user_id
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_od as
(
select
dt,
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),user_id,sku_id
)t1
group by dt,user_id
)
insert overwrite table dws_user_action_daycount partition(dt)
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats,
coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt,tmp_od.dt)
from tmp_login
full outer join tmp_cf
on tmp_login.user_id=tmp_cf.user_id
and tmp_login.dt=tmp_cf.dt
full outer join tmp_order
on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
and coalesce(tmp_login.dt,tmp_cf.dt)=tmp_order.dt
full outer join tmp_pay
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt)=tmp_pay.dt
full outer join tmp_ri
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt)=tmp_ri.dt
full outer join tmp_rp
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt)=tmp_rp.dt
full outer join tmp_comment
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt)=tmp_comment.dt
full outer join tmp_coupon
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt)=tmp_coupon.dt
full outer join tmp_od
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt)=tmp_od.dt;
- 每日装载
with
tmp_login as
(
select
user_id,
count(*) login_count
from dwd_page_log
where dt='2020-06-15'
and user_id is not null
and last_page_id is null
group by user_id
),
tmp_cf as
(
select
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where dt='2020-06-15'
and user_id is not null
and action_id in ('cart_add','favor_add')
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
where (dt='2020-06-15'
or dt='9999-99-99')
and date_format(create_time,'yyyy-MM-dd')='2020-06-15'
group by user_id
),
tmp_pay as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
where dt='2020-06-15'
group by user_id
),
tmp_ri as
(
select
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by user_id
),
tmp_rp as
(
select
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount
from dwd_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from dwd_order_refund_info
where dt>=date_add('2020-06-15',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by rp.user_id
),
tmp_coupon as
(
select
user_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='2020-06-15',1,0)) coupon_used_count
from dwd_coupon_use
where (dt='2020-06-15' or dt='9999-99-99')
and (date_format(get_time, 'yyyy-MM-dd') = '2020-06-15'
or date_format(using_time,'yyyy-MM-dd')='2020-06-15'
or date_format(used_time,'yyyy-MM-dd')='2020-06-15')
group by user_id
),
tmp_comment as
(
select
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
where dt='2020-06-15'
group by user_id
),
tmp_od as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from dwd_order_detail
where dt='2020-06-15'
group by user_id,sku_id
)t1
group by user_id
)
insert overwrite table dws_user_action_daycount partition(dt='2020-06-15')
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats
from tmp_login
full outer join tmp_cf on tmp_login.user_id=tmp_cf.user_id
full outer join tmp_order on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
full outer join tmp_pay on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
full outer join tmp_ri on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
full outer join tmp_rp on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
full outer join tmp_comment on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
full outer join tmp_coupon on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
full outer join tmp_od on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id;
(3)查询加载结果
商品主题
(1)建表语句
DROP TABLE IF EXISTS dws_sku_action_daycount;
CREATE EXTERNAL TABLE dws_sku_action_daycount
(
`sku_id` STRING COMMENT 'sku_id',
`order_count` BIGINT COMMENT '被下单次数',
`order_num` BIGINT COMMENT '被下单件数',
`order_activity_count` BIGINT COMMENT '参与活动被下单次数',
`order_coupon_count` BIGINT COMMENT '使用优惠券被下单次数',
`order_activity_reduce_amount` DECIMAL(16,2) COMMENT '优惠金额(活动)',
`order_coupon_reduce_amount` DECIMAL(16,2) COMMENT '优惠金额(优惠券)',
`order_original_amount` DECIMAL(16,2) COMMENT '被下单原价金额',
`order_final_amount` DECIMAL(16,2) COMMENT '被下单最终金额',
`payment_count` BIGINT COMMENT '被支付次数',
`payment_num` BIGINT COMMENT '被支付件数',
`payment_amount` DECIMAL(16,2) COMMENT '被支付金额',
`refund_order_count` BIGINT COMMENT '被退单次数',
`refund_order_num` BIGINT COMMENT '被退单件数',
`refund_order_amount` DECIMAL(16,2) COMMENT '被退单金额',
`refund_payment_count` BIGINT COMMENT '被退款次数',
`refund_payment_num` BIGINT COMMENT '被退款件数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '被退款金额',
`cart_count` BIGINT COMMENT '被加入购物车次数',
`favor_count` BIGINT COMMENT '被收藏次数',
`appraise_good_count` BIGINT COMMENT '好评数',
`appraise_mid_count` BIGINT COMMENT '中评数',
`appraise_bad_count` BIGINT COMMENT '差评数',
`appraise_default_count` BIGINT COMMENT '默认评价数'
) COMMENT '每日商品行为'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_sku_action_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
- 首日装载
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from dwd_order_detail od
join
(
select
order_id,
callback_time
from dwd_payment_info
where callback_time is not null
)pi on pi.order_id=od.order_id
group by date_format(callback_time,'yyyy-MM-dd'),sku_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount,
callback_time
from dwd_refund_payment
)rp
left join
(
select
order_id,
sku_id,
refund_num
from dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.sku_id
),
tmp_cf as
(
select
dt,
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where action_id in ('cart_add','favor_add')
group by dt,item
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt)
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count),
dt
from
(
select
dt,
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by dt,sku_id;
- 每日装载
with
tmp_order as
(
select
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
group by sku_id
),
tmp_pay as
(
select
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by sku_id
),
tmp_ri as
(
select
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by sku_id
),
tmp_rp as
(
select
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount
from dwd_refund_payment
where dt='2020-06-15'
)rp
left join
(
select
order_id,
sku_id,
refund_num
from dwd_order_refund_info
where dt>=date_add('2020-06-15',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by rp.sku_id
),
tmp_cf as
(
select
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from dwd_action_log
where dt='2020-06-15'
and action_id in ('cart_add','favor_add')
group by item
),
tmp_comment as
(
select
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from dwd_comment_info
where dt='2020-06-15'
group by sku_id
)
insert overwrite table dws_sku_action_daycount partition(dt='2020-06-15')
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count)
from
(
select
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by sku_id;
(3)查询加载结果
优惠券主题
(1)建表语句
DROP TABLE IF EXISTS dws_coupon_info_daycount;
CREATE EXTERNAL TABLE dws_coupon_info_daycount(
`coupon_id` STRING COMMENT '优惠券ID',
`get_count` BIGINT COMMENT '被领取次数',
`order_count` BIGINT COMMENT '被使用(下单)次数',
`order_reduce_amount` DECIMAL(16,2) COMMENT '用券下单优惠金额',
`order_original_amount` DECIMAL(16,2) COMMENT '用券订单原价金额',
`order_final_amount` DECIMAL(16,2) COMMENT '用券下单最终金额',
`payment_count` BIGINT COMMENT '被使用(支付)次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '用券支付优惠金额',
`payment_amount` DECIMAL(16,2) COMMENT '用券支付总金额',
`expire_count` BIGINT COMMENT '过期次数'
) COMMENT '每日活动统计'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_coupon_info_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
- 首日装载
with
tmp_cu as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt,coupon_exprie.dt) dt,
coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id,coupon_exprie.coupon_id) coupon_id,
nvl(get_count,0) get_count,
nvl(order_count,0) order_count,
nvl(payment_count,0) payment_count,
nvl(expire_count,0) expire_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) get_count
from dwd_coupon_use
group by date_format(get_time,'yyyy-MM-dd'),coupon_id
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) order_count
from dwd_coupon_use
where using_time is not null
group by date_format(using_time,'yyyy-MM-dd'),coupon_id
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.coupon_id=coupon_using.coupon_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) payment_count
from dwd_coupon_use
where used_time is not null
group by date_format(used_time,'yyyy-MM-dd'),coupon_id
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.coupon_id,coupon_using.coupon_id)=coupon_used.coupon_id
full outer join
(
select
date_format(expire_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) expire_count
from dwd_coupon_use
where expire_time is not null
group by date_format(expire_time,'yyyy-MM-dd'),coupon_id
)coupon_exprie
on coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt)=coupon_exprie.dt
and coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id)=coupon_exprie.coupon_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where coupon_id is not null
group by date_format(create_time,'yyyy-MM-dd'),coupon_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
order_id,
coupon_id,
split_coupon_amount,
split_final_amount
from dwd_order_detail
where coupon_id is not null
)od
join
(
select
order_id,
callback_time
from dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),coupon_id
)
insert overwrite table dws_coupon_info_daycount partition(dt)
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count),
dt
from
(
select
dt,
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by dt,coupon_id;
- 每日装载
with
tmp_cu as
(
select
coupon_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='2020-06-15',1,0)) get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='2020-06-15',1,0)) order_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='2020-06-15',1,0)) payment_count,
sum(if(date_format(expire_time,'yyyy-MM-dd')='2020-06-15',1,0)) expire_count
from dwd_coupon_use
where dt='9999-99-99'
or dt='2020-06-15'
group by coupon_id
),
tmp_order as
(
select
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
and coupon_id is not null
group by coupon_id
),
tmp_pay as
(
select
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and coupon_id is not null
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by coupon_id
)
insert overwrite table dws_coupon_info_daycount partition(dt='2020-06-15')
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count)
from
(
select
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by coupon_id;
- 查询加载结果
活动主题
(1)建表语句
DROP TABLE IF EXISTS dws_activity_info_daycount;
CREATE EXTERNAL TABLE dws_activity_info_daycount(
`activity_rule_id` STRING COMMENT '活动规则ID',
`activity_id` STRING COMMENT '活动ID',
`order_count` BIGINT COMMENT '参与某活动某规则下单次数', `order_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单减免金额',
`order_original_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '参与某活动某规则下单最终金额',
`payment_count` BIGINT COMMENT '参与某活动某规则支付次数',
`payment_reduce_amount` DECIMAL(16,2) COMMENT '参与某活动某规则支付减免金额',
`payment_amount` DECIMAL(16,2) COMMENT '参与某活动某规则支付金额'
) COMMENT '每日活动统计'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_activity_info_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
- 首日装载
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where activity_id is not null
group by date_format(create_time,'yyyy-MM-dd'),activity_rule_id,activity_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
activity_rule_id,
activity_id,
order_id,
split_activity_amount,
split_final_amount
from dwd_order_detail
where activity_id is not null
)od
join
(
select
order_id,
callback_time
from dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),activity_rule_id,activity_id
)
insert overwrite table dws_activity_info_daycount partition(dt)
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
dt
from
(
select
dt,
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
dt,
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by dt,activity_rule_id,activity_id;
- 每日装载
with
tmp_order as
(
select
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from dwd_order_detail
where dt='2020-06-15'
and activity_id is not null
group by activity_rule_id,activity_id
),
tmp_pay as
(
select
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from dwd_order_detail
where (dt='2020-06-15'
or dt=date_add('2020-06-15',-1))
and activity_id is not null
and order_id in
(
select order_id from dwd_payment_info where dt='2020-06-15'
)
group by activity_rule_id,activity_id
)
insert overwrite table dws_activity_info_daycount partition(dt='2020-06-15')
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount)
from
(
select
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by activity_rule_id,activity_id;
(3)查询加载结果
地区主题
(1)建表语句
DROP TABLE IF EXISTS dws_area_stats_daycount;
CREATE EXTERNAL TABLE dws_area_stats_daycount(
`province_id` STRING COMMENT '地区编号',
`visit_count` BIGINT COMMENT '访问次数',
`login_count` BIGINT COMMENT '登录次数',
`visitor_count` BIGINT COMMENT '访客人数',
`user_count` BIGINT COMMENT '用户人数',
`order_count` BIGINT COMMENT '下单次数',
`order_original_amount` DECIMAL(16,2) COMMENT '下单原始金额',
`order_final_amount` DECIMAL(16,2) COMMENT '下单最终金额',
`payment_count` BIGINT COMMENT '支付次数',
`payment_amount` DECIMAL(16,2) COMMENT '支付金额',
`refund_order_count` BIGINT COMMENT '退单次数',
`refund_order_amount` DECIMAL(16,2) COMMENT '退单金额',
`refund_payment_count` BIGINT COMMENT '退款次数',
`refund_payment_amount` DECIMAL(16,2) COMMENT '退款金额'
) COMMENT '每日地区统计表'
PARTITIONED BY (`dt` STRING)
STORED AS PARQUET
LOCATION '/warehouse/gmall/dws/dws_area_stats_daycount/'
TBLPROPERTIES ("parquet.compression"="lzo");
(2)数据装载
- 首日装载
with
tmp_vu as
(
select
dt,
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
dt,
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from dwd_page_log
where last_page_id is null
group by dt,area_code
)tmp
left join dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),province_id
),
tmp_ro as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from dwd_refund_payment
group by date_format(callback_time,'yyyy-MM-dd'),province_id
)
insert overwrite table dws_area_stats_daycount partition(dt)
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount),
dt
from
(
select
dt,
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by dt,province_id;
- 每日装载
with
tmp_vu as
(
select
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from dwd_page_log
where dt='2020-06-15'
and last_page_id is null
group by area_code
)tmp
left join dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from dwd_order_info
where dt='2020-06-15'
or dt='9999-99-99'
and date_format(create_time,'yyyy-MM-dd')='2020-06-15'
group by province_id
),
tmp_pay as
(
select
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from dwd_payment_info
where dt='2020-06-15'
group by province_id
),
tmp_ro as
(
select
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from dwd_order_refund_info
where dt='2020-06-15'
group by province_id
),
tmp_rp as
(
select
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from dwd_refund_payment
where dt='2020-06-15'
group by province_id
)
insert overwrite table dws_area_stats_daycount partition(dt='2020-06-15')
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount)
from
(
select
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by province_id;
(3)查询加载结果
DWS层首日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本dwd_to_dws_init.sh:
#!/bin/bash
APP=gmall
if [ -n "$2" ] ;then
do_date=$2
else
echo "请传入日期参数"
exit
fi
dws_visitor_action_daycount="
insert overwrite table ${APP}.dws_visitor_action_daycount partition(dt='$do_date')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;
"
dws_area_stats_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_vu as
(
select
dt,
id province_id,
visit_count,
login_count,
visitor_count,
user_count
from
(
select
dt,
area_code,
count(*) visit_count,--访客访问次数
count(user_id) login_count,--用户访问次数,等价于sum(if(user_id is not null,1,0))
count(distinct(mid_id)) visitor_count,--访客人数
count(distinct(user_id)) user_count--用户人数
from ${APP}.dwd_page_log
where last_page_id is null
group by dt,area_code
)tmp
left join ${APP}.dim_base_province area
on tmp.area_code=area.area_code
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) order_count,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),province_id
),
tmp_ro as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_order_count,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),province_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
province_id,
count(*) refund_payment_count,
sum(refund_amount) refund_payment_amount
from ${APP}.dwd_refund_payment
group by date_format(callback_time,'yyyy-MM-dd'),province_id
)
insert overwrite table ${APP}.dws_area_stats_daycount partition(dt)
select
province_id,
sum(visit_count),
sum(login_count),
sum(visitor_count),
sum(user_count),
sum(order_count),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_amount),
dt
from
(
select
dt,
province_id,
visit_count,
login_count,
visitor_count,
user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_vu
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
order_count,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_order
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_amount,
0 refund_order_count,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_pay
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
refund_order_count,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_amount
from tmp_ro
union all
select
dt,
province_id,
0 visit_count,
0 login_count,
0 visitor_count,
0 user_count,
0 order_count,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_amount,
0 refund_order_count,
0 refund_order_amount,
refund_payment_count,
refund_payment_amount
from tmp_rp
)t1
group by dt,province_id;
"
dws_user_action_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_login as
(
select
dt,
user_id,
count(*) login_count
from ${APP}.dwd_page_log
where user_id is not null
and last_page_id is null
group by dt,user_id
),
tmp_cf as
(
select
dt,
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where user_id is not null
and action_id in ('cart_add','favor_add')
group by dt,user_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
group by date_format(callback_time,'yyyy-MM-dd'),user_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount,
callback_time
from ${APP}.dwd_refund_payment
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.user_id
),
tmp_coupon as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt) dt,
coalesce(coupon_get.user_id,coupon_using.user_id,coupon_used.user_id) user_id,
nvl(coupon_get_count,0) coupon_get_count,
nvl(coupon_using_count,0) coupon_using_count,
nvl(coupon_used_count,0) coupon_used_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_get_count
from ${APP}.dwd_coupon_use
where get_time is not null
group by user_id,date_format(get_time,'yyyy-MM-dd')
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_using_count
from ${APP}.dwd_coupon_use
where using_time is not null
group by user_id,date_format(using_time,'yyyy-MM-dd')
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.user_id=coupon_using.user_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
user_id,
count(*) coupon_used_count
from ${APP}.dwd_coupon_use
where used_time is not null
group by user_id,date_format(used_time,'yyyy-MM-dd')
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.user_id,coupon_using.user_id)=coupon_used.user_id
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),user_id
),
tmp_od as
(
select
dt,
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
date_format(create_time,'yyyy-MM-dd') dt,
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from ${APP}.dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),user_id,sku_id
)t1
group by dt,user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt)
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_activity_reduce_amount,0),
nvl(order_coupon_count,0),
nvl(order_coupon_reduce_amount,0),
nvl(order_original_amount,0),
nvl(order_final_amount,0),
nvl(payment_count,0),
nvl(payment_amount,0),
nvl(refund_order_count,0),
nvl(refund_order_num,0),
nvl(refund_order_amount,0),
nvl(refund_payment_count,0),
nvl(refund_payment_num,0),
nvl(refund_payment_amount,0),
nvl(coupon_get_count,0),
nvl(coupon_using_count,0),
nvl(coupon_used_count,0),
nvl(appraise_good_count,0),
nvl(appraise_mid_count,0),
nvl(appraise_bad_count,0),
nvl(appraise_default_count,0),
order_detail_stats,
coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt,tmp_od.dt)
from tmp_login
full outer join tmp_cf
on tmp_login.user_id=tmp_cf.user_id
and tmp_login.dt=tmp_cf.dt
full outer join tmp_order
on coalesce(tmp_login.user_id,tmp_cf.user_id)=tmp_order.user_id
and coalesce(tmp_login.dt,tmp_cf.dt)=tmp_order.dt
full outer join tmp_pay
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id)=tmp_pay.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt)=tmp_pay.dt
full outer join tmp_ri
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id)=tmp_ri.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt)=tmp_ri.dt
full outer join tmp_rp
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id)=tmp_rp.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt)=tmp_rp.dt
full outer join tmp_comment
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id)=tmp_comment.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt)=tmp_comment.dt
full outer join tmp_coupon
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id)=tmp_coupon.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt)=tmp_coupon.dt
full outer join tmp_od
on coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id)=tmp_od.user_id
and coalesce(tmp_login.dt,tmp_cf.dt,tmp_order.dt,tmp_pay.dt,tmp_ri.dt,tmp_rp.dt,tmp_comment.dt,tmp_coupon.dt)=tmp_od.dt;
"
dws_activity_info_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) order_count,
sum(split_activity_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where activity_id is not null
group by date_format(create_time,'yyyy-MM-dd'),activity_rule_id,activity_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
activity_rule_id,
activity_id,
count(*) payment_count,
sum(split_activity_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
activity_rule_id,
activity_id,
order_id,
split_activity_amount,
split_final_amount
from ${APP}.dwd_order_detail
where activity_id is not null
)od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),activity_rule_id,activity_id
)
insert overwrite table ${APP}.dws_activity_info_daycount partition(dt)
select
activity_rule_id,
activity_id,
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
dt
from
(
select
dt,
activity_rule_id,
activity_id,
order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount
from tmp_order
union all
select
dt,
activity_rule_id,
activity_id,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_reduce_amount,
payment_amount
from tmp_pay
)t1
group by dt,activity_rule_id,activity_id;"
dws_sku_action_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) order_count,
sum(sku_num) order_num,
sum(if(split_activity_amount>0,1,0)) order_activity_count,
sum(if(split_coupon_amount>0,1,0)) order_coupon_count,
sum(split_activity_amount) order_activity_reduce_amount,
sum(split_coupon_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
sku_id,
count(*) payment_count,
sum(sku_num) payment_num,
sum(split_final_amount) payment_amount
from ${APP}.dwd_order_detail od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
where callback_time is not null
)pi on pi.order_id=od.order_id
group by date_format(callback_time,'yyyy-MM-dd'),sku_id
),
tmp_ri as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
),
tmp_rp as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
rp.sku_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(refund_amount) refund_payment_amount
from
(
select
order_id,
sku_id,
refund_amount,
callback_time
from ${APP}.dwd_refund_payment
)rp
left join
(
select
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
)ri
on rp.order_id=ri.order_id
and rp.sku_id=ri.sku_id
group by date_format(callback_time,'yyyy-MM-dd'),rp.sku_id
),
tmp_cf as
(
select
dt,
item sku_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where action_id in ('cart_add','favor_add')
group by dt,item
),
tmp_comment as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
sku_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
group by date_format(create_time,'yyyy-MM-dd'),sku_id
)
insert overwrite table ${APP}.dws_sku_action_daycount partition(dt)
select
sku_id,
sum(order_count),
sum(order_num),
sum(order_activity_count),
sum(order_coupon_count),
sum(order_activity_reduce_amount),
sum(order_coupon_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_num),
sum(payment_amount),
sum(refund_order_count),
sum(refund_order_num),
sum(refund_order_amount),
sum(refund_payment_count),
sum(refund_payment_num),
sum(refund_payment_amount),
sum(cart_count),
sum(favor_count),
sum(appraise_good_count),
sum(appraise_mid_count),
sum(appraise_bad_count),
sum(appraise_default_count),
dt
from
(
select
dt,
sku_id,
order_count,
order_num,
order_activity_count,
order_coupon_count,
order_activity_reduce_amount,
order_coupon_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_order
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
payment_num,
payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_pay
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
refund_order_count,
refund_order_num,
refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_ri
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
refund_payment_count,
refund_payment_num,
refund_payment_amount,
0 cart_count,
0 favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_rp
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
cart_count,
favor_count,
0 appraise_good_count,
0 appraise_mid_count,
0 appraise_bad_count,
0 appraise_default_count
from tmp_cf
union all
select
dt,
sku_id,
0 order_count,
0 order_num,
0 order_activity_count,
0 order_coupon_count,
0 order_activity_reduce_amount,
0 order_coupon_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
0 payment_num,
0 payment_amount,
0 refund_order_count,
0 refund_order_num,
0 refund_order_amount,
0 refund_payment_count,
0 refund_payment_num,
0 refund_payment_amount,
0 cart_count,
0 favor_count,
appraise_good_count,
appraise_mid_count,
appraise_bad_count,
appraise_default_count
from tmp_comment
)t1
group by dt,sku_id;"
dws_coupon_info_daycount="
set hive.exec.dynamic.partition.mode=nonstrict;
with
tmp_cu as
(
select
coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt,coupon_exprie.dt) dt,
coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id,coupon_exprie.coupon_id) coupon_id,
nvl(get_count,0) get_count,
nvl(order_count,0) order_count,
nvl(payment_count,0) payment_count,
nvl(expire_count,0) expire_count
from
(
select
date_format(get_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) get_count
from ${APP}.dwd_coupon_use
group by date_format(get_time,'yyyy-MM-dd'),coupon_id
)coupon_get
full outer join
(
select
date_format(using_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) order_count
from ${APP}.dwd_coupon_use
where using_time is not null
group by date_format(using_time,'yyyy-MM-dd'),coupon_id
)coupon_using
on coupon_get.dt=coupon_using.dt
and coupon_get.coupon_id=coupon_using.coupon_id
full outer join
(
select
date_format(used_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) payment_count
from ${APP}.dwd_coupon_use
where used_time is not null
group by date_format(used_time,'yyyy-MM-dd'),coupon_id
)coupon_used
on nvl(coupon_get.dt,coupon_using.dt)=coupon_used.dt
and nvl(coupon_get.coupon_id,coupon_using.coupon_id)=coupon_used.coupon_id
full outer join
(
select
date_format(expire_time,'yyyy-MM-dd') dt,
coupon_id,
count(*) expire_count
from ${APP}.dwd_coupon_use
where expire_time is not null
group by date_format(expire_time,'yyyy-MM-dd'),coupon_id
)coupon_exprie
on coalesce(coupon_get.dt,coupon_using.dt,coupon_used.dt)=coupon_exprie.dt
and coalesce(coupon_get.coupon_id,coupon_using.coupon_id,coupon_used.coupon_id)=coupon_exprie.coupon_id
),
tmp_order as
(
select
date_format(create_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) order_reduce_amount,
sum(original_amount) order_original_amount,
sum(split_final_amount) order_final_amount
from ${APP}.dwd_order_detail
where coupon_id is not null
group by date_format(create_time,'yyyy-MM-dd'),coupon_id
),
tmp_pay as
(
select
date_format(callback_time,'yyyy-MM-dd') dt,
coupon_id,
sum(split_coupon_amount) payment_reduce_amount,
sum(split_final_amount) payment_amount
from
(
select
order_id,
coupon_id,
split_coupon_amount,
split_final_amount
from ${APP}.dwd_order_detail
where coupon_id is not null
)od
join
(
select
order_id,
callback_time
from ${APP}.dwd_payment_info
)pi
on od.order_id=pi.order_id
group by date_format(callback_time,'yyyy-MM-dd'),coupon_id
)
insert overwrite table ${APP}.dws_coupon_info_daycount partition(dt)
select
coupon_id,
sum(get_count),
sum(order_count),
sum(order_reduce_amount),
sum(order_original_amount),
sum(order_final_amount),
sum(payment_count),
sum(payment_reduce_amount),
sum(payment_amount),
sum(expire_count),
dt
from
(
select
dt,
coupon_id,
get_count,
order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
payment_count,
0 payment_reduce_amount,
0 payment_amount,
expire_count
from tmp_cu
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
order_reduce_amount,
order_original_amount,
order_final_amount,
0 payment_count,
0 payment_reduce_amount,
0 payment_amount,
0 expire_count
from tmp_order
union all
select
dt,
coupon_id,
0 get_count,
0 order_count,
0 order_reduce_amount,
0 order_original_amount,
0 order_final_amount,
0 payment_count,
payment_reduce_amount,
payment_amount,
0 expire_count
from tmp_pay
)t1
group by dt,coupon_id;
"
case $1 in
"dws_visitor_action_daycount" )
hive -e "$dws_visitor_action_daycount"
;;
"dws_user_action_daycount" )
hive -e "$dws_user_action_daycount"
;;
"dws_activity_info_daycount" )
hive -e "$dws_activity_info_daycount"
;;
"dws_area_stats_daycount" )
hive -e "$dws_area_stats_daycount"
;;
"dws_sku_action_daycount" )
hive -e "$dws_sku_action_daycount"
;;
"dws_coupon_info_daycount" )
hive -e "$dws_coupon_info_daycount"
;;
"all" )
hive -e "$dws_visitor_action_daycount$dws_user_action_daycount$dws_activity_info_daycount$dws_area_stats_daycount$dws_sku_action_daycount$dws_coupon_info_daycount"
;;
esac
增加执行权限:
[atguigu@hadoop102 bin]$ chmod +x dwd_to_dws_init.sh
(2)脚本使用
执行脚本:
[atguigu@hadoop102 bin]$ dwd_to_dws_init.sh all 2020-06-14
查看数据是否导入成功。
DWS层每日数据装载脚本
(1)编写脚本
在/home/atguigu/bin目录下创建脚本dwd_to_dws.sh:
#!/bin/bash
APP=gmall
# 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天
if [ -n "$2" ] ;then
do_date=$2
else
do_date=`date -d "-1 day" +%F`
fi
dws_visitor_action_daycount="insert overwrite table ${APP}.dws_visitor_action_daycount partition(dt='$do_date')
select
t1.mid_id,
t1.brand,
t1.model,
t1.is_new,
t1.channel,
t1.os,
t1.area_code,
t1.version_code,
t1.visit_count,
t3.page_stats
from
(
select
mid_id,
brand,
model,
if(array_contains(collect_set(is_new),'0'),'0','1') is_new,--ods_page_log中,同一天内,同一设备的is_new字段,可能全部为1,可能全部为0,也可能部分为0,部分为1(卸载重装),故做该处理
collect_set(channel) channel,
collect_set(os) os,
collect_set(area_code) area_code,
collect_set(version_code) version_code,
sum(if(last_page_id is null,1,0)) visit_count
from ${APP}.dwd_page_log
where dt='$do_date'
and last_page_id is null
group by mid_id,model,brand
)t1
join
(
select
mid_id,
brand,
model,
collect_set(named_struct('page_id',page_id,'page_count',page_count,'during_time',during_time)) page_stats
from
(
select
mid_id,
brand,
model,
page_id,
count(*) page_count,
sum(during_time) during_time
from ${APP}.dwd_page_log
where dt='$do_date'
group by mid_id,model,brand,page_id
)t2
group by mid_id,model,brand
)t3
on t1.mid_id=t3.mid_id
and t1.brand=t3.brand
and t1.model=t3.model;"
dws_user_action_daycount="
with
tmp_login as
(
select
user_id,
count(*) login_count
from ${APP}.dwd_page_log
where dt='$do_date'
and user_id is not null
and last_page_id is null
group by user_id
),
tmp_cf as
(
select
user_id,
sum(if(action_id='cart_add',1,0)) cart_count,
sum(if(action_id='favor_add',1,0)) favor_count
from ${APP}.dwd_action_log
where dt='$do_date'
and user_id is not null
and action_id in ('cart_add','favor_add')
group by user_id
),
tmp_order as
(
select
user_id,
count(*) order_count,
sum(if(activity_reduce_amount>0,1,0)) order_activity_count,
sum(if(coupon_reduce_amount>0,1,0)) order_coupon_count,
sum(activity_reduce_amount) order_activity_reduce_amount,
sum(coupon_reduce_amount) order_coupon_reduce_amount,
sum(original_amount) order_original_amount,
sum(final_amount) order_final_amount
from ${APP}.dwd_order_info
where (dt='$do_date'
or dt='9999-99-99')
and date_format(create_time,'yyyy-MM-dd')='$do_date'
group by user_id
),
tmp_pay as
(
select
user_id,
count(*) payment_count,
sum(payment_amount) payment_amount
from ${APP}.dwd_payment_info
where dt='$do_date'
group by user_id
),
tmp_ri as
(
select
user_id,
count(*) refund_order_count,
sum(refund_num) refund_order_num,
sum(refund_amount) refund_order_amount
from ${APP}.dwd_order_refund_info
where dt='$do_date'
group by user_id
),
tmp_rp as
(
select
rp.user_id,
count(*) refund_payment_count,
sum(ri.refund_num) refund_payment_num,
sum(rp.refund_amount) refund_payment_amount
from
(
select
user_id,
order_id,
sku_id,
refund_amount
from ${APP}.dwd_refund_payment
where dt='$do_date'
)rp
left join
(
select
user_id,
order_id,
sku_id,
refund_num
from ${APP}.dwd_order_refund_info
where dt>=date_add('$do_date',-15)
)ri
on rp.order_id=ri.order_id
and rp.sku_id=rp.sku_id
group by rp.user_id
),
tmp_coupon as
(
select
user_id,
sum(if(date_format(get_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_get_count,
sum(if(date_format(using_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_using_count,
sum(if(date_format(used_time,'yyyy-MM-dd')='$do_date',1,0)) coupon_used_count
from ${APP}.dwd_coupon_use
where (dt='$do_date' or dt='9999-99-99')
and (date_format(get_time, 'yyyy-MM-dd') = '$do_date'
or date_format(using_time,'yyyy-MM-dd')='$do_date'
or date_format(used_time,'yyyy-MM-dd')='$do_date')
group by user_id
),
tmp_comment as
(
select
user_id,
sum(if(appraise='1201',1,0)) appraise_good_count,
sum(if(appraise='1202',1,0)) appraise_mid_count,
sum(if(appraise='1203',1,0)) appraise_bad_count,
sum(if(appraise='1204',1,0)) appraise_default_count
from ${APP}.dwd_comment_info
where dt='$do_date'
group by user_id
),
tmp_od as
(
select
user_id,
collect_set(named_struct('sku_id',sku_id,'sku_num',sku_num,'order_count',order_count,'activity_reduce_amount',activity_reduce_amount,'coupon_reduce_amount',coupon_reduce_amount,'original_amount',original_amount,'final_amount',final_amount)) order_detail_stats
from
(
select
user_id,
sku_id,
sum(sku_num) sku_num,
count(*) order_count,
cast(sum(split_activity_amount) as decimal(16,2)) activity_reduce_amount,
cast(sum(split_coupon_amount) as decimal(16,2)) coupon_reduce_amount,
cast(sum(original_amount) as decimal(16,2)) original_amount,
cast(sum(split_final_amount) as decimal(16,2)) final_amount
from ${APP}.dwd_order_detail
where dt='$do_date'
group by user_id,sku_id
)t1
group by user_id
)
insert overwrite table ${APP}.dws_user_action_daycount partition(dt='$do_date')
select
coalesce(tmp_login.user_id,tmp_cf.user_id,tmp_order.user_id,tmp_pay.user_id,tmp_ri.user_id,tmp_rp.user_id,tmp_comment.user_id,tmp_coupon.user_id,tmp_od.user_id),
nvl(login_count,0),
nvl(cart_count,0),
nvl(favor_count,0),
nvl(order_count,0),
nvl(order_activity_count,0),
nvl(order_