一,问题描述

给定一颗二叉树,已知其根结点。

①计算二叉树所有结点的个数

②计算二叉树中叶子结点的个数

③计算二叉树中满节点(度为2)的个数

 

二,算法分析

找出各个问题的基准条件,然后采用递归的方式实现。

①计算二叉树所有结点的个数

1)当树为空时,结点个数为0,否则为根节点个数 加上 根的左子树中节点个数 再加上 根的右子树中节点的个数

借助遍历二叉树的思路,每访问一个结点,计数增1。因此,可使用类似于先序遍历的思路来实现,代码如下:

//计算树中节点个数
    private int nubmerOfNodes(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else{
            nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right);
        }
        return nodes;
    }

  

计算树中节点个数的代码方法与计算树的高度的代码非常相似!

 

//求二叉树的深度 
   public static int deep(Node node){ 
    int h1, h2;
       if(node == null) 
         {return 0; 
         }
       else{
   h1= deep(node.left);
   h2= deep(node.right);
     return (h1<h2)?h2+1:h1+1;
       }
       
   }

  

②计算叶子结点的个数

1)当树为空时,叶子结点个数为0

2)当某个节点的左右子树均为空时,表明该结点为叶子结点,返回1

3)当某个节点有左子树,或者有右子树时,或者既有左子树又有右子树时,说明该节点不是叶子结点,因此叶结点个数等于左子树中叶子结点个数 加上 右子树中叶子结点的个数

//计算树中叶结点的个数
    private int numberOfLeafs(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else if(root.left == null && root.right == null)
            return 1;
        else
            nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right);
        return nodes;
    }

  

③计算满节点的个数(对于二叉树而言,满节点是度为2的节点)

满节点的基准情况有点复杂:

1)当树为空时,满节点个数为0

2)当树中只有一个节点时,满节点个数为0

3)当某节点只有左子树时,需要进一步判断左子树中是否存在满节点

4)当某节点只有右子树时,需要进一步判断右子树中是否存在满节点

5)当某节点即有左子树,又有右子树时,说明它是满结点。但是由于它的左子树或者右子树中可能还存在满结点,因此满结点个数等于该节点加上该节点的左子树中满结点的个数 再加上 右子树中满结点的个数。

//计算树中度为2的节点的个数--满节点的个数
    private int numberOfFulls(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else if(root.left == null && root.right == null)
            return 0;
        else if(root.left == null && root.right != null)
            nodes = numberOfFulls(root.right);
        else if(root.left != null && root.right == null)
            nodes = numberOfFulls(root.left);            
        else
            nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right);
        return nodes;
    }

  

对于二叉树而言,有一个公式:度为2的结点个数等于度为0的结点个数减去1。 即:n(2)=n(0)-1

故可以这样:

private int numberOfFulls(BinaryNode<T> root){
        return numberOfLeafs(root) > 0 ? numberOfLeafs(root)-1 : 0;// n(2)=n(0)-1
    }

  三,完整程序代码如下

public class BinarySearchTree<T extends Comparable<? super T>> {

    private static class BinaryNode<T> {
        T element;
        BinaryNode<T> left;
        BinaryNode<T> right;

        public BinaryNode(T element) {
            this(element, null, null);
        }

        public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) {
            this.element = element;
            this.left = left;
            this.right = right;
        }

        public String toString() {
            return element.toString();
        }
    }

    private BinaryNode<T> root;

    public BinarySearchTree() {
        root = null;
    }

    public void insert(T ele) {
        root = insert(ele, root);// 每次插入操作都会'更新'根节点.
    }

    private BinaryNode<T> insert(T ele, BinaryNode<T> root) {
        if (root == null)
            return new BinaryNode<T>(ele);
        int compareResult = ele.compareTo(root.element);
        if (compareResult > 0)
            root.right = insert(ele, root.right);
        else if (compareResult < 0)
            root.left = insert(ele, root.left);
        else
            ;
        return root;
    }

    public int height() {
        return height(root);
    }

    private int height(BinaryNode<T> root) {
        if (root == null)
            return -1;// 叶子节点的高度为0,空树的高度为1

        return 1 + (int) Math.max(height(root.left), height(root.right));
    }

    public int numberOfNodes(BinarySearchTree<T> tree){
        return nubmerOfNodes(tree.root);
    }
    
    //计算树中节点个数
    private int nubmerOfNodes(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else{
            nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right);
        }
        return nodes;
    }
    
    
    public int numberOfLeafs(BinarySearchTree<T> tree){
        return numberOfLeafs(tree.root);
    }
    //计算树中叶结点的个数
    private int numberOfLeafs(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else if(root.left == null && root.right == null)
            return 1;
        else
            nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right);
        return nodes;
    }
    
    public int numberOfFulls(BinarySearchTree<T> tree){
        return numberOfFulls(tree.root);
        // return numberOfLeafs(tree.root) > 0 ? numberOfLeafs(tree.root)-1 : 0;// n(2)=n(0)-1
    }
    //计算树中度为2的节点的个数--满节点的个数
    private int numberOfFulls(BinaryNode<T> root){
        int nodes = 0;
        if(root == null)
            return 0;
        else if(root.left == null && root.right == null)
            return 0;
        else if(root.left == null && root.right != null)
            nodes = numberOfFulls(root.right);
        else if(root.left != null && root.right == null)
            nodes = numberOfFulls(root.left);            
        else
            nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right);
        return nodes;
    }
    
    
    public static void main(String[] args) {
        BinarySearchTree<Integer> intTree = new BinarySearchTree<>();
        double averHeight = intTree.averageHeigth(1, 6, intTree);
        System.out.println("averageheight = " + averHeight);
        
        /*-----------All Nodes-----------------*/
        int totalNodes = intTree.numberOfNodes(intTree);
        System.out.println("total nodes: " + totalNodes);
        
        /*-----------Leaf Nodes-----------------*/
        int leafNodes = intTree.numberOfLeafs(intTree);
        System.out.println("leaf nodes: " + leafNodes);
        
        /*-----------Full Nodes-----------------*/
        int fullNodes = intTree.numberOfFulls(intTree);
        System.out.println("full nodes: " + fullNodes);
    }

    public double averageHeigth(int tree_numbers, int node_numbers, BinarySearchTree<Integer> tree) {
        int tree_height, totalHeight = 0;
        for(int i = 1; i <= tree_numbers; i++){
            int[] randomNumbers = C2_2_8.algorithm3(node_numbers);
            //build tree
            for(int j = 0; j < node_numbers; j++)
            {
                tree.insert(randomNumbers[j]);
                System.out.print(randomNumbers[j] + " ");
            }
            System.out.println();
            tree_height = tree.height();
            System.out.println("height:" + tree_height);
    
            totalHeight += tree_height;
//            tree.root = null;//for building next tree
        }
    return (double)totalHeight / tree_numbers;
    }
}