一,问题描述
给定一颗二叉树,已知其根结点。
①计算二叉树所有结点的个数
②计算二叉树中叶子结点的个数
③计算二叉树中满节点(度为2)的个数
二,算法分析
找出各个问题的基准条件,然后采用递归的方式实现。
①计算二叉树所有结点的个数
1)当树为空时,结点个数为0,否则为根节点个数 加上 根的左子树中节点个数 再加上 根的右子树中节点的个数
借助遍历二叉树的思路,每访问一个结点,计数增1。因此,可使用类似于先序遍历的思路来实现,代码如下:
//计算树中节点个数
private int nubmerOfNodes(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else{
nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right);
}
return nodes;
}
计算树中节点个数的代码方法与计算树的高度的代码非常相似!
//求二叉树的深度
public static int deep(Node node){
int h1, h2;
if(node == null)
{return 0;
}
else{
h1= deep(node.left);
h2= deep(node.right);
return (h1<h2)?h2+1:h1+1;
}
}
②计算叶子结点的个数
1)当树为空时,叶子结点个数为0
2)当某个节点的左右子树均为空时,表明该结点为叶子结点,返回1
3)当某个节点有左子树,或者有右子树时,或者既有左子树又有右子树时,说明该节点不是叶子结点,因此叶结点个数等于左子树中叶子结点个数 加上 右子树中叶子结点的个数
//计算树中叶结点的个数
private int numberOfLeafs(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else if(root.left == null && root.right == null)
return 1;
else
nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right);
return nodes;
}
③计算满节点的个数(对于二叉树而言,满节点是度为2的节点)
满节点的基准情况有点复杂:
1)当树为空时,满节点个数为0
2)当树中只有一个节点时,满节点个数为0
3)当某节点只有左子树时,需要进一步判断左子树中是否存在满节点
4)当某节点只有右子树时,需要进一步判断右子树中是否存在满节点
5)当某节点即有左子树,又有右子树时,说明它是满结点。但是由于它的左子树或者右子树中可能还存在满结点,因此满结点个数等于该节点加上该节点的左子树中满结点的个数 再加上 右子树中满结点的个数。
//计算树中度为2的节点的个数--满节点的个数
private int numberOfFulls(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else if(root.left == null && root.right == null)
return 0;
else if(root.left == null && root.right != null)
nodes = numberOfFulls(root.right);
else if(root.left != null && root.right == null)
nodes = numberOfFulls(root.left);
else
nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right);
return nodes;
}
对于二叉树而言,有一个公式:度为2的结点个数等于度为0的结点个数减去1。 即:n(2)=n(0)-1
故可以这样:
private int numberOfFulls(BinaryNode<T> root){
return numberOfLeafs(root) > 0 ? numberOfLeafs(root)-1 : 0;// n(2)=n(0)-1
}
三,完整程序代码如下
public class BinarySearchTree<T extends Comparable<? super T>> {
private static class BinaryNode<T> {
T element;
BinaryNode<T> left;
BinaryNode<T> right;
public BinaryNode(T element) {
this(element, null, null);
}
public BinaryNode(T element, BinaryNode<T> left, BinaryNode<T> right) {
this.element = element;
this.left = left;
this.right = right;
}
public String toString() {
return element.toString();
}
}
private BinaryNode<T> root;
public BinarySearchTree() {
root = null;
}
public void insert(T ele) {
root = insert(ele, root);// 每次插入操作都会'更新'根节点.
}
private BinaryNode<T> insert(T ele, BinaryNode<T> root) {
if (root == null)
return new BinaryNode<T>(ele);
int compareResult = ele.compareTo(root.element);
if (compareResult > 0)
root.right = insert(ele, root.right);
else if (compareResult < 0)
root.left = insert(ele, root.left);
else
;
return root;
}
public int height() {
return height(root);
}
private int height(BinaryNode<T> root) {
if (root == null)
return -1;// 叶子节点的高度为0,空树的高度为1
return 1 + (int) Math.max(height(root.left), height(root.right));
}
public int numberOfNodes(BinarySearchTree<T> tree){
return nubmerOfNodes(tree.root);
}
//计算树中节点个数
private int nubmerOfNodes(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else{
nodes = 1 + nubmerOfNodes(root.left) + nubmerOfNodes(root.right);
}
return nodes;
}
public int numberOfLeafs(BinarySearchTree<T> tree){
return numberOfLeafs(tree.root);
}
//计算树中叶结点的个数
private int numberOfLeafs(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else if(root.left == null && root.right == null)
return 1;
else
nodes = numberOfLeafs(root.left) + numberOfLeafs(root.right);
return nodes;
}
public int numberOfFulls(BinarySearchTree<T> tree){
return numberOfFulls(tree.root);
// return numberOfLeafs(tree.root) > 0 ? numberOfLeafs(tree.root)-1 : 0;// n(2)=n(0)-1
}
//计算树中度为2的节点的个数--满节点的个数
private int numberOfFulls(BinaryNode<T> root){
int nodes = 0;
if(root == null)
return 0;
else if(root.left == null && root.right == null)
return 0;
else if(root.left == null && root.right != null)
nodes = numberOfFulls(root.right);
else if(root.left != null && root.right == null)
nodes = numberOfFulls(root.left);
else
nodes = 1 + numberOfFulls(root.left) + numberOfFulls(root.right);
return nodes;
}
public static void main(String[] args) {
BinarySearchTree<Integer> intTree = new BinarySearchTree<>();
double averHeight = intTree.averageHeigth(1, 6, intTree);
System.out.println("averageheight = " + averHeight);
/*-----------All Nodes-----------------*/
int totalNodes = intTree.numberOfNodes(intTree);
System.out.println("total nodes: " + totalNodes);
/*-----------Leaf Nodes-----------------*/
int leafNodes = intTree.numberOfLeafs(intTree);
System.out.println("leaf nodes: " + leafNodes);
/*-----------Full Nodes-----------------*/
int fullNodes = intTree.numberOfFulls(intTree);
System.out.println("full nodes: " + fullNodes);
}
public double averageHeigth(int tree_numbers, int node_numbers, BinarySearchTree<Integer> tree) {
int tree_height, totalHeight = 0;
for(int i = 1; i <= tree_numbers; i++){
int[] randomNumbers = C2_2_8.algorithm3(node_numbers);
//build tree
for(int j = 0; j < node_numbers; j++)
{
tree.insert(randomNumbers[j]);
System.out.print(randomNumbers[j] + " ");
}
System.out.println();
tree_height = tree.height();
System.out.println("height:" + tree_height);
totalHeight += tree_height;
// tree.root = null;//for building next tree
}
return (double)totalHeight / tree_numbers;
}
}