GDAL在Unity3D中的使用以及坐标转换

这是一篇记录帖,应届毕业生一枚,第一次写博客有点小紧张,有大神路过的话也希望帮忙看看对不对~

引言

本文的目的是用Unity读取tif图像数据的经纬度转换成Unity的坐标并放到对应的位置上

开发平台

vs2019+Unity2021.3.6

GDAL下载

    首先解决Unity读取tif数据的问题,这里我用了GDAL来读取tif数据,相信有小伙伴不知道怎么配置GDAL,这里我就把我踩坑配置的方法说下。

   

GDAL使用

   我们可以在start函数里面去测试一下导入是否成功,path就是你存放tif的路径,我们这里的w和h就是图片的宽和高。

unity hexadecimal转成 ll984转换成unity_scala

 如果打印成功了也就证明你导入成功了,可以开始下面步骤了。

unity hexadecimal转成 ll984转换成unity_unity_02

 新建一个double类型数组,用来储存读取tif时候的数据。

unity hexadecimal转成 ll984转换成unity_unity_03

然后利用GDAL的API来进行读取。

unity hexadecimal转成 ll984转换成unity_unity hexadecimal转成_04

 该Api会存放给你6个值,这6个值代表了不同的意义,如图下。

unity hexadecimal转成 ll984转换成unity_3d_05

0 和3代表经度和纬度,也就是你读取影像的左上角的经纬度,1代表遥感图像的水平空间分辨率,5代表遥感图像的垂直空间分辨率,一般相等。如果遥感图是正的话没有发生偏转,2和4就是0。

我们可以按照图上的点算出对应点的对应地理坐标

如果行数和列数分别为row,column;

xGeo = geoTransform[0] + column * geoTransform[1] + row * geoTransform[2]
yGeo = geoTransform[3] + column * geoTransform[4] + row * geoTransform[5]

unity hexadecimal转成 ll984转换成unity_c#_06

我们就可以求出点的四个边角的经纬度了,从而能求出中点的经纬度

把经纬度带到经纬度转3d坐标的方法中即可。

unity hexadecimal转成 ll984转换成unity_unity hexadecimal转成_07

 

unity hexadecimal转成 ll984转换成unity_unity_08

分割线————————————————————————————————

经纬度转世界坐标:

网上有这方面的代码,大家可以自行CV,如果你懒的话当我没说。我这里是翻译的python经纬度转3d坐标的代码。

public class Cartesian3
    {

        public double x = 0;
        public double y = 0;
        public double z = 0;


        Transform3D tan = new Transform3D();
     
       
        public Cartesian3(double x = 0, double y = 0, double z = 0)
        {
            this.x = x;
            this.y = y;
            this.z = z;
        }

        public void print()
        {
            Console.Write($"{x}");
        }
    }
    #endregion


    public class Transform3D 
    {
        public Transform3D()
        {
            
        }

        /// <summary>
        /// 度转角度
        /// </summary>
        /// <param name="degrees">十进制度/param>
        /// <returns>弧度</returns>
        public double ToRadians(double degrees)
        {
            return degrees * (Math.PI / 180.0);
        }

        /// <summary>
        /// 向量求模
        /// </summary>
        /// <param name="cartesian"></param>
        /// <returns></returns>
        public double MagnitudeSquared(Cartesian3 cartesian)
        {
            return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z;
        }
        
        /// <summary>
        /// 模的平方
        /// </summary>
        /// <param name="cartesian"></param>
        /// <returns></returns>
        public double Magnitude(Cartesian3 cartesian)
        {
            return Math.Sqrt(MagnitudeSquared(cartesian));
        }


        public Cartesian3 Normalize(Cartesian3 cartesian, Cartesian3 result)
        {
            double ma = Magnitude(cartesian);
            result.x = cartesian.x / ma;
            result.y = cartesian.y / ma;
            result.z = cartesian.z / ma;
            return result;
        }

        public Cartesian3 MultiplyComponents(Cartesian3 left, Cartesian3 right, Cartesian3 result)
        {
            result.x = left.x * right.x;
            result.y = left.y * right.y;
            result.z = left.z * right.z;
            return result;
        }

        public double dot(Cartesian3 left, Cartesian3 right)
        {
            double result = left.x * right.x + left.y * right.y + left.z * right.z;
            return result;
        }

        public Cartesian3 DivideByScalar(Cartesian3 cartesian, double scalar, Cartesian3 result)
        {
            result.x = cartesian.x / scalar;
            result.y = cartesian.y / scalar;
            result.z = cartesian.z / scalar;
            return result;
        }

        public Cartesian3 MultiplyByScalar(Cartesian3 cartesian, double scalar, Cartesian3 result)
        {
            result.x = cartesian.x * scalar;
            result.y = cartesian.y * scalar;
            result.z = cartesian.z * scalar;
            return result;
        }

        public Cartesian3 Add(Cartesian3 left, Cartesian3 right, Cartesian3 result)
        {
            result.x = left.x + right.x;
            result.y = left.y + right.y;
            result.z = left.z + right.z;
            return result;
        }


        /// <summary>
        /// 角度转世界坐标
        /// </summary>
        /// <param name="longitude"></param>
        /// <param name="latitude"></param>
        /// <param name="height"></param>
        /// <param name="result"></param>
        /// <returns></returns>
        public Cartesian3 FromRadians(double longitude, double latitude, double height)
        {
            Cartesian3 result = new Cartesian3();
            Cartesian3 scratchN = new Cartesian3();
            Cartesian3 scratchK = new Cartesian3();
            Cartesian3 radiiSquared = new Cartesian3(
                 6378.1370 * 6378.1370,//缩放1000倍
                 6378.1370 * 6378.1370,
                6378.1370 * 6378.1370
                //6356752.3142451793 * 6356752.3142451793
            );
            double cosLatitude = Math.Cos(latitude);
            scratchN.x = cosLatitude * Math.Cos(longitude);
            scratchN.y = cosLatitude * Math.Sin(longitude);
            scratchN.z = Math.Sin(latitude);
            scratchN = Normalize(scratchN, scratchN); // 转换为单位向量

            scratchK = MultiplyComponents(radiiSquared, scratchN, scratchK);
            double gamma = Math.Sqrt(dot(scratchN, scratchK));
            scratchK = DivideByScalar(scratchK, gamma, scratchK);
            scratchN = MultiplyByScalar(scratchN, height, scratchN);

            return Add(scratchK, scratchN, result);
        }

        public Cartesian3 FromDegrees(double longitude, double latitude, double height = 0)
        {
            longitude = ToRadians(longitude);
            latitude = ToRadians(latitude);

            return FromRadians(longitude, latitude, height);
        }
        
    }