一、 Scipy模块
开源科学库,SciPy一般都是操纵NumPy数组来进行科学计算,统计分析,可以说是基于NumPy之上。SciPy提供了许多科学计算的库函数,包含的功能,最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器,系数矩阵计算等,
- 应用场景:Scipy是高端科学计算工具包,用于数学、科学、工程学等领域
- 安装 pip install scipy
""" 包含子模块
cipy.cluster向量计算
Kmeansscipy.constants物理和数学常量
scipy.fftpack傅立叶变换
scipy.integrate积分程序
scipy.interpolate插值
scipy.io数据输入输出
scipy.linalg线性代数程序
scipy.ndimagen维图像包
scipy.odr正交距离回归
scipy.optimize优化
scipy.signal信号处理
scipy.sparse稀疏矩阵
scipy.spatial空间数据结构和算法
scipy.special一些特殊的数学函数
scipy.stats统计
"""
二 、概率密度
from scipy import stats
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['SimHei']#用来正常显示中文标签
plt.rcParams['axes.unicode_minus']=False#用来正常显示负号
#正态分布概率密度
X = []
Y = []
for a in np.linspace(-5, 5, 100):
y = stats.norm.pdf(a)
X.append(a)
Y.append(y)
plt.plot(X, Y)
plt.xlabel("x")
plt.ylabel("p")
plt.title("正态分布概率密度")
plt.show()
三、正态分布查表
正态分布查表其实就是查累积概率分布。
设某校学生身高服从均值为160, 方差为3600的正态分布,那该校学生身高在180以下的学生比例是多少?
转换为标准正态分布,
服从标准正态分布,
,于是我们查标准正态分布表0.5的值,用
scipy.stats.norm.cdf(0.5)
from scipy import stats
p = stats.norm.cdf(0.5)
print(p)
四、常用统计方法
from scipy.stats import chi2 # 卡方分布
from scipy.stats import norm # 正态分布
from scipy.stats import t # t分布
from scipy.stats import f # F分布
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import chi2_contingency # 列联表分析
# matplotlib画图注释中文需要设置
from matplotlib.font_manager import FontProperties
xy_font_set = FontProperties(fname=r"c:\windows\fonts\方正稚艺简体.ttf", size=12)
zhushi_font_set = FontProperties(fname=r"c:\windows\fonts\方正粗倩简体.ttf", size=12)
titleYW_font_set = FontProperties(fname=r"c:\windows\fonts\Gabriola.ttf", size=20)
titleZW_font_set = FontProperties(fname=r"c:\windows\fonts\汉仪细行楷简.ttf", size=18)
# rvs: Random Variates
# pdf: Probability Density Function 概率密度函数
# cdf: Cumulative Distribution Function 概率密度函数的积分函数
# sf: Survival Function (1-CDF)
# ppf: Percent Point Function (Inverse of CDF) 百分点函数,概率密度函数的积分值
# isf: Inverse Survival Function (Inverse of SF)
# stats: Return mean, variance, (Fisher’s) skew, or (Fisher’s) kurtosis
# moment: non-central moments of the distribution
# ppf以概率的形式,查询函数值-----------类似分布临界表
plt.figure()
# example ------------------------------------------- 卡方分布(右侧单边)
plt.subplot2grid((2, 2), (0, 0))
df = 20 # 自由度
# print(chi2.ppf(0.01, df)) # 计算函q=0.01概率时数值。其中 q = 1-a
# print(chi2.cdf(8.260, df)) # 知道x值求a
x = np.linspace(chi2.ppf(0.01, df), # 绘制概率密度图
chi2.ppf(0.99, df), 100)
plt.plot(x, chi2.pdf(x, df), alpha=0.6, label='chi2 pdf')
plt.title(u'自由度为20时的卡方概率密度函数图', fontproperties=titleZW_font_set, size=10)
# 计算平均数、方差、标准差
# print(chi2.mean(df))
# print(chi2.var(df))
# print(chi2.std(df))
# example ---------------------------------------------------- 标准正态分布(左侧单边)
plt.subplot2grid((2, 2), (0, 1))
# print(norm.ppf(0.6179)) # 知道q时求x, q=a
# print(norm.cdf(0.3)) # 知道x时求q
x = np.linspace(norm.ppf(0.01), norm.ppf(0.99), 100)
plt.plot(x, norm.pdf(x), alpha=0.6, label='norm pdf')
plt.title(u'标准正态分布概率密度函数图', fontproperties=titleZW_font_set, size=10)
# example ----------------------------------------------------- t分布(双边分布)
plt.subplot2grid((2, 2), (1, 0))
df = 15
x = np.linspace(t.ppf(0.01, df), t.ppf(0.99, df), 100)
# print(t.ppf(0.95, df)) # q=0.95,a=(1-q)*2
# print(t.cdf(1.753, df))
plt.plot(x, t.pdf(x, df), alpha=0.6, label='t pdf')
plt.title(u'自由度为15时的t分布概率密度函数图', fontproperties=titleZW_font_set, size=10)
# example ------------------------------------------------------ F分布(右侧单边分布)
plt.subplot2grid((2, 2), (1, 1))
df = 5
dn = 8
x = np.linspace(f.ppf(0.01, df, dn), f.ppf(0.99, df, dn), 100)
# print(f.ppf(0.95, df, dn))
plt.plot(x, f.pdf(x, df, dn), alpha=0.6, label='f pdf')
plt.title(u'自由度为5和8时的f分布概率密度函数图', fontproperties=titleZW_font_set, size=10)
# example ------------------------------------------------------- 非标准正态分布
plt.figure()
std = 1
mean = 2
normalDistribution = stats.norm(mean, std) # 构建统计分布
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x))
# plt.show()
# example -------------------------------------------------------- 对连续数据进行正态拟合
plt.figure()
train = pd.read_csv("csv/Titanic/train.csv")
train_Age = train.dropna(subset=['Age'])
M_S = stats.norm.fit(train_Age['Age']) # 正态拟合的平均值与标准差
train_Age['Age'].plot(kind='kde') # 原本的概率密度分布图
normalDistribution = stats.norm(M_S[0], M_S[1]) # 绘制拟合的正态分布图
x = np.linspace(normalDistribution.ppf(0.01), normalDistribution.ppf(0.99), 100)
plt.plot(x, normalDistribution.pdf(x), c='orange')
plt.xlabel('Age about Titanic')
plt.title('Titanic[Age] on NormalDistribution', size=20)
plt.legend(['Origin', 'NormDistribution'])
np.random.normal()的意思是一个正态分布,normal这里是正态的意思。
numpy.random.normal(loc=0,scale=1e-2,size=shape)
参数loc(float):正态分布的均值,对应着这个分布的中心。
参数scale(float):正态分布的标准差
参数size(int 或者整数元组):输出矩阵的shape,默认为None。
# ----------------------------------------------------------------- R x C列联表,独立性检验
# 建立关于性别与存活
train_pclass_0 = train['Pclass'][train['Survived'] == 0].value_counts()
train_pclass_1 = train['Pclass'][train['Survived'] == 1].value_counts()
train_pclass_01 = pd.concat([train_pclass_0, train_pclass_1], axis=1, sort=True)
train_pclass_01.columns = ['Not_Survived', 'Survived']
g, p, dof, expctd = chi2_contingency(train_pclass_01.values) # g为chi2值,服从自由度为dof的卡方分布
print(g)
# 拟合优度检验,判断两个分类型变量是否独立
# 首先绘制卡方自由度为dof的曲线
plt.figure()
x = np.linspace(chi2.ppf(0.01, dof), chi2.ppf(0.99, dof), 100)
plt.plot(x, chi2.pdf(x, dof))
# 以95%置信区间,查看小概率事件区间
plt.axvline(chi2.ppf(0.975, dof), color='r')
plt.axvline(chi2.ppf(0.025, dof), color='r')
plt.title('chi2 distribution'+'whose dof is '+str(dof))
plt.text(chi2.ppf(0.975, dof), 0.02, 'q=0.95,z='+str(round(chi2.ppf(0.975, dof), 2)), ha='right', va='top', color='g', alpha=0.8, size=15)
plt.text(chi2.ppf(0.025, dof), 0.02, 'q=0.05,z='+str(round(chi2.ppf(0.025, dof), 2)), ha='left', va='top', color='g', alpha=0.8, size=15)
plt.show()