题目大意:给出一张地图,地图上有N个点,M条边
现在有一个人去给这张地图上的点分东西(这个人可以选择任意一点当起点),给出每个点收到东西的兴奋度,求兴奋度的最大值(同一个点可以重复经过,且经过点的时候不一定要分东西给这个点)

解题思路:先求强连通分量,并求出每个强连通分量内的最大兴奋度,接着缩点,用桥连接,形成一张新图

接着跑最长路,以每个入度为0的点为源点

#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

#define N 30010
#define M 150010
#define INF 0x3f3f3f3f
#define min(a,b) ((a) < (b) ? (a) : (b))
#define max(a,b) ((a) > (b) ? (a) : (b))

struct Edge{
    int to, next;
}E[M];

struct Node{
    int x, y;
}node[M];

int n, m, tot, dfs_clock, scc_cnt, top;
int head[N], val[N], pre[N], sccno[N], lowlink[N], stack[N], cost[N], in[N], d[N];
bool vis[N];

void AddEdge(int u, int v) {
    E[tot].to = v;
    E[tot].next = head[u];
    head[u] = tot++;
}

void init() {

    for (int i = 0; i < n; i++) {
        scanf("%d", &val[i]);
        val[i] = max(val[i], 0);
    }

    memset(head, -1, sizeof(head));
    tot = 0;

    for (int i = 0; i < m; i++) {
        scanf("%d%d", &node[i].x, &node[i].y);
        AddEdge(node[i].x, node[i].y);
    }
}

void dfs(int u) {
    pre[u] = lowlink[u] = ++dfs_clock;
    stack[++top] = u;

    int v;
    for (int i = head[u]; i != -1; i = E[i].next) {
        v = E[i].to;
        if (!pre[v]) {
            dfs(v);
            lowlink[u] = min(lowlink[u], lowlink[v]);
        }
        else if (!sccno[v]) {
            lowlink[u] = min(lowlink[u], pre[v]);
        }
    }

    if (pre[u] == lowlink[u]) {
        scc_cnt++;
        cost[scc_cnt] = 0;
        while (1) {
            v = stack[top--];
            sccno[v] = scc_cnt;
            cost[scc_cnt] += val[v];
            if (u == v)
                break;
        }
    }
}

int ans;
void SPFA(int u) {

    d[u] = cost[u];
    ans = max(d[u], ans);
    queue<int> q;
    q.push(u);
    vis[u] = true;

    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int i = head[u]; i != -1; i = E[i].next) {
            int v = E[i].to;
            if (d[v] < d[u] + cost[v]) {
                d[v] = d[u] + cost[v];
                ans = max(ans, d[v]);
                if (!vis[v]) {
                    vis[v] = true;
                    q.push(v);
                }
            }
        }
        vis[u] = false;
    }
}

void solve() {
    memset(pre, 0, sizeof(pre));
    memset(sccno, 0, sizeof(sccno));
    dfs_clock = top = scc_cnt = 0;

    for (int i = 0; i < n; i++) 
        if (!pre[i])
            dfs(i);

    memset(head, -1, sizeof(head));
    memset(in, 0, sizeof(in));
    tot = 0;

    int u, v;
    for (int i = 0; i < m; i++) {
        u = sccno[node[i].x];
        v = sccno[node[i].y];
        if (u != v) {
            AddEdge(u, v);
            in[v]++;
        }
    }

    ans = 0;
    memset(d, 0, sizeof(d));
    for (int i = 1; i <= scc_cnt; i++)
        if (!in[i]) {
            memset(vis, 0, sizeof(vis));
            SPFA(i);
        }
    printf("%d\n", ans);
}

int main() {
    while (scanf("%d%d", &n, &m) != EOF) {
        init();
        solve();
    }
    return 0;
}