题目链接:
http://poj.org/problem?id=3592
题目大意:
有一个N*M的矩阵地图,矩阵中用了多种字符代表不同的地形,如果是数字X(0~9),则表示
该区域为矿区,有X单位的矿产。如果是"*",则表示该区域为传送点,并且对应唯一一个目标
坐标。如果是"#",,则表示该区域为山区,矿车不能进入。现在矿车的出发点在坐标(0,0)点。
并且(0,0)点一定不是"#"区域。矿车只能向右走、向下走或是遇到传送点的时候可以传送到
指定位置。那么问题来了:矿车最多能采到多少矿。
思路:
如果把N*M个矩阵单位看做是N*M个点,编号为0~N*M。然后从一个坐标到另一个坐标看做
是两点之间的边。到达的坐标所拥有的矿产为边的权值。那么问题就变成了:矿车从节点0出发,
所能达到的最长路径。但是除了向右走和向下走的边,考虑到还有传送点和目标坐标构成的边,
原图上就会多了很多回退边,构成了很多的有向环。有向环的出现,使得矿车能够采到的矿产
增多了一部分,只要能走到有向环内,则该环内所有点的矿产都能被采到。但是问题也出来了,
如果不做处理,直接搜索路径,那么矿车很可能会走进环内不出来。
于是想到了缩点,把有向环缩为一个点,也就是强连通分量缩点。并记录强连通分量中的总矿产
值。缩点后,原图就变成了一个有向无环图(DAG)。然后重新建立一个新图(DAG),对新图求最
长路径(用SPFA算法),得到源点(0,0)到各点的最长路径。从中找出最长的路径,就是所求的结
果。
需要注意很多点:
1."*"区域能够传送到"#"区域。。。
2.矿车开始的地方是(0,0)
3.有多组数据,一定注意数据的清空
AC代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN = 1610;
const int MAXM = 50050;
const int INF = 0xffffff0;
struct EdgeNode
{
int to;
int next;
}Edges[MAXM],Edges1[MAXM]; //存放原图,新图
int Head[MAXN],Head1[MAXN];
int vis[MAXN],vist[MAXN]; //标记访问
int dfn[MAXN],low[MAXN],belong[MAXN]; //开始访问时间次序,栈中最早访问时间
int Stack[MAXN]; //缩点用到的栈
int m,id,ip,scc,lay,N,M; //id原图边数,ip新图边数
int cost[MAXN],sum[MAXN]; //cost为原图每点的值,sum为强连通分量的值
char Map[50][50]; //存放原图
int Dist[MAXN],outque[MAXN];
void AddEdges(int u,int v) //原图加边
{
Edges[id].to = v;
Edges[id].next = Head[u];
Head[u] = id++;
}
void AddEdges1(int u,int v) //新图加边
{
Edges1[ip].to = v;
Edges1[ip].next = Head1[u];
Head1[u] = ip++;
}
int TarBFS(int pos)
{
int v;
vis[pos] = 1;
low[pos] = dfn[pos] = ++lay;
Stack[m++] = pos;
for(int i = Head[pos]; i != -1; i = Edges[i].next)
{
int v = Edges[i].to;
if( !dfn[v] )
{
TarBFS(v);
low[pos] = min(low[pos], low[v]);
}
else if( vis[v] )
low[pos] = min(low[pos], low[v]);
}
if(dfn[pos] == low[pos])
{
++scc;
do
{
v = Stack[--m];
sum[scc] += cost[v];
belong[v] = scc;
vis[v] = 0;
}while(v != pos);
}
return 0;
}
void ReBuildMap() //重建新图(DAG)
{
ip = 0;
for(int u = 0; u < N*M; ++u)
for(int k = Head[u]; k != -1; k = Edges[k].next)
{
int v = Edges[k].to;
if(belong[u] != belong[v])
AddEdges1(belong[u],belong[v]);
}
}
void SPFA() //求最长路
{
memset(vist,0,sizeof(vist));
memset(Dist,0,sizeof(Dist));
queue<int> Q;
Q.push(belong[0]);
vist[belong[0]] = 1;
Dist[belong[0]] = sum[belong[0]];
while( !Q.empty() )
{
int u = Q.front();
Q.pop();
vist[u] = 0;
for(int i = Head1[u]; i != -1; i = Edges1[i].next)
{
int v = Edges1[i].to;
if(Dist[v] < Dist[u] + sum[v])
{
Dist[v] = Dist[u] + sum[v];
if( !vist[v] )
{
vist[v] = 1;
Q.push(v);
}
}
}
}
}
int main()
{
int T,x,y;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&N,&M);
memset(Head,-1,sizeof(Head));
memset(Head1,-1,sizeof(Head1));
memset(cost,0,sizeof(cost));
memset(vis,0,sizeof(vis));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(sum,0,sizeof(sum));
for(int i = 0; i < N; ++i)
scanf("%s",Map[i]);
for(int i = 0; i < N; ++i)
{
for(int j = 0; j < M; ++j)
{
if(Map[i][j] != '#')
{
if(i+1 < N && Map[i+1][j] != '#') //向下走
AddEdges(i*M+j,(i+1)*M+j);
if(j+1 < M && Map[i][j+1] != '#') //向右走
AddEdges(i*M+j,i*M+j+1);
cost[i*M+j] = Map[i][j] - '0';
if(Map[i][j] == '*')
{
cost[i*M+j] = 0;
scanf("%d%d",&x,&y);
if(Map[x][y] != '#')
AddEdges(i*M+j,x*M+y);
}
}
}
}
scc = id = m = lay = 0;
for(int i = 0; i < N*M; ++i)
if(!dfn[i])
TarBFS(i);
ReBuildMap();
SPFA();
int ans = -1;
for(int i = 1; i <= scc; ++i)
if(ans < Dist[i])
ans = Dist[i];
printf("%d\n",ans);
}
return 0;
}
/*
100
10 10
12345678*0
2345678901
345678*012
456*890123
5678901234
6789*12345
7890123456
890*234567
901234*678
0123*56789
2 2
3 3
4 4
5 5
6 6
7 7
8 8
3 3
*1*
2*1
11*
1 1
2 2
1 3
1 1
答案为:
124
5
*/
失败代码:
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue>
#include<stack>
using namespace std;
const int MAXN = 1610;
const int MAXM = 50050;
const int INF = 0xffffff0;
struct EdgeNode
{
int to;
int next;
}Edges[MAXM],Edges1[MAXM];
int Head[MAXN],Head1[MAXN];
int vis[MAXN],vist[MAXN]; //标记访问
int dfn[MAXN],low[MAXN]; //开始访问时间次序,栈中最早访问时间
int Stack[MAXN]; //缩点用到的栈
int m,id,ip,scc,lay,N,M; //id原图边数,ip新图边数
int cost[MAXN],sum[MAXN]; //cost为原图每点的值,sum为强连通分量的值
char Map[50][50]; //存放原图
int Dist[MAXN],outque[MAXN];
stack<int> S;
void AddEdges(int u,int v) //原图加边
{
Edges[id].to = v;
Edges[id].next = Head[u];
Head[u] = id++;
}
void AddEdges1(int u,int v)
{
Edges1[ip].to = v;
Edges1[ip].next = Head1[u];
Head1[u] = ip++;
}
int TarBFS(int pos)
{
vis[pos] = 1;
low[pos] = dfn[pos] = lay++;
S.push(pos);
for(int i = Head[pos]; i != -1; i = Edges[i].next)
{
if( dfn[Edges[i].to] == 0)
{
TarBFS(Edges[i].to);
if(low[Edges[i].to] < low[pos])
low[pos] = low[Edges[i].to];
}
else if( vis[Edges[i].to] == 1 && dfn[Edges[i].to] < low[pos])
low[pos] = dfn[Edges[i].to];
}
int v;
if(dfn[pos] == low[pos])
{
scc++;
do
{
v = S.top();
S.pop();
sum[scc] += cost[v];
low[v] = scc;
vis[v] = 2;
}while(v != pos);
}
return 0;
}
void Tarjan()
{
m = 0;
for(int i = 0; i < N*M; ++i)
{
if(vis[i] == 0)
TarBFS(i);
}
}
void ReBuildMap()
{
ip = 0;
for(int i = 0; i < N*M; ++i)
for(int k = Head[i]; k != -1; k = Edges[k].next)
if(low[i] != low[Edges[k].to])
AddEdges1(low[i],low[Edges[k].to]);
}
int SPFA()
{
memset(vist,0,sizeof(vist));
memset(outque,0,sizeof(outque));
memset(Dist,0,sizeof(Dist));
queue<int> Q;
Q.push(low[0]);
vist[low[0]] = 1;
Dist[low[0]] = sum[low[0]];
while( !Q.empty() )
{
int u = Q.front();
Q.pop();
vist[u] = 0;
outque[u]++;
if(outque[u] > scc)
return false;
for(int i = Head1[u]; i != -1; i = Edges1[i].next)
{
if(Dist[u] + sum[Edges1[i].to] > Dist[Edges1[i].to])
{
Dist[Edges1[i].to] = Dist[u] + sum[Edges1[i].to];
if( !vist[Edges1[i].to] )
{
vist[Edges1[i].to] = 1;
Q.push(Edges1[i].to);
}
}
}
}
return true;
}
int main()
{
int T,x,y;
scanf("%d",&T);
while(T--)
{
memset(Head,-1,sizeof(Head));
memset(Head1,-1,sizeof(Head1));
memset(cost,0,sizeof(cost));
memset(vis,0,sizeof(vis));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(sum,0,sizeof(sum));
memset(Edges,0,sizeof(Edges));
memset(Edges1,0,sizeof(Edges1));
memset(Map,0,sizeof(Map));
scc = id = 0;
lay = 1;
scanf("%d%d",&N,&M);
for(int i = 0; i < N; ++i)
scanf("%s",Map[i]);
for(int i = 0; i < N; ++i)
{
for(int j = 0; j < M; ++j)
{
if(Map[i][j] != '#')
{
if(i+1 < N && Map[i+1][j] != '#') //向下走
AddEdges(i*M+j,(i+1)*M+j);
if(j+1 < M && Map[i][j+1] != '#') //向右走
AddEdges(i*M+j,i*M+j+1);
cost[i*M+j] = Map[i][j] - '0';
if(Map[i][j] == '*')
{
cost[i*M+j] = 0;
scanf("%d%d",&x,&y);
if(Map[x][y] != '#')
AddEdges(i*M+j,x*M+y);
}
}
}
}
Tarjan();
ReBuildMap();
SPFA();
int ans = -1;
for(int i = 1; i <= scc; ++i)
if(ans < Dist[i])
ans = Dist[i];
printf("%d\n",ans);
}
return 0;
}