声学模型的训练一般是基于极大似然准则(ML),然而ML只考虑正确路径的优化训练,没有考虑降低其他路径的分数,因此识别效果不佳。区分性训练目标是提高正确路径得分的同时降低其他路径的得分,加大这些路径间的差异,因此识别效果更好。1 互信息 区分性训练的其中一个常用准则叫MMI准则,即最大化互信息准则。那么什么是互信息呢?我们先来看看互信息的根源。源头:信息量:一个事件发生的概率越
转载
2023-10-11 21:19:48
500阅读
# 实现最大互信息的Python教程
在数据科学领域,最大互信息(Maximum Mutual Information,MMI)是用于度量多个随机变量之间依赖关系的重要工具。本文将帮助你实现最大互信息的计算。我们将分步讲解这个过程,并提供相应的代码示例。
## 步骤流程
以下是计算最大互信息的一般流程:
| 步骤 | 描述 |
|------
简介: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之一,而基于互信息的医学图像配准方法被认为是最好的配准方法之一。基于此,本文将介绍简单的基于互信息的图像配准算法。预备知识熵 熵(entropy)是信息论中的重要概念,用来描述系统不确定性的测度,反映
转载
2024-09-29 08:36:45
53阅读
# 最大互信息法及其在Python中的实现
在信息论领域,互信息是一个重要的概念,用于衡量两个随机变量之间的依赖关系。最大互信息法则是通过最大化两个变量之间的互信息来选择特征或进行可视化的一种方法。本文将介绍最大互信息法的基本概念,并给出在Python中的实现示例。
## 什么是互信息?
互信息(Mutual Information, MI)是一个描述随机变量之间互相依赖程度的度量。具体来说
原创
2024-10-12 04:39:36
90阅读
哈喽,本期给大家带来Python最神秘模块评选。有人会说:你拖更多久了?答:大约1个月。问:为什么?答:想更视频,然后就没更专栏。……好了,言归正传,我们开始吧!我们将会评选10个最神秘的模块。10.itertools这个模块与functools齐名(均带tools)。与functools一样有许多功能性函数,如itertools.chain与functools.partial。但是……Pytho
最近看一些文档,看见了互信息的使用,第一次接触互信息,感觉和专业有些相关,就把它记录下来,下面是一片不错的文章。 互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。平均互信息量定义:互信息量I(xi;yj)在联合概率空间P(XY)中的统计平均值。 平均互信息I(X;Y)克服了互信息量I(xi;yj)的随机性,成为
转载
2023-11-11 13:22:52
120阅读
参考【信息论基础】第2章离散信息的度量—自信息和互信息_哔哩哔哩_bilibili目录一、自信息◼ 自信息例题◼ 联合自信息 例题◼ 条件自信息例题 例题2◼ 自信息,联合自信息和条件自信息之间的关系二、互信息◼ 互信息互信息的性质例题◼ 条件互信息例题一、自信息◼ 自信息自信息主要描述:随机事件中,某一个事件自身的属性。比如:从1到10中随机抽取一个数字,可能的结果有10个,
转载
2023-12-14 13:37:41
228阅读
# 使用Python实现最大互信息的详细步骤
在数据分析和机器学习领域,最大互信息(Maximum Mutual Information, MMI)是一个重要的概念。通过计算变量间的互信息,我们可以评估它们之间的依赖关系。接下来,我们将详细介绍如何使用Python实现最大互信息,特别适合刚入行的小白。
## 流程概述
实现最大互信息的过程可以分为几个步骤,如下表所示:
| 步骤 | 描述
MICMIC 即:Maximal Information Coefficient 最大互信息系数。 使用MIC来衡量两个基因之间的关联程度,线性或非线性关系,相较于Mutual Information(MI)互信息而言有更高的准确度。MIC是一种优秀的数据关联性的计算方式。本篇文章将会详细介绍MIC的算法原理,优缺点以及Python的具体实现方式,并给出一个可视化方案。CSDN原文链
# 使用 Python 计算互信息:新手指南
互信息(Mutual Information)是信息论中的一个重要概念,用于量化两个随机变量之间的依赖关系。在数据科学和机器学习中,互信息可以用来评估变量之间的相关性,是特征选择的一个有效工具。本篇文章将带你一步一步实现互信息的计算。
## 流程概述
在开始之前,我们可以把实现互信息的步骤拆分为以下几个简单的部分:
| 步骤 | 描述
原创
2024-08-07 07:30:45
145阅读
标准化互信息NMI (Normalized Mutual Information)常用在聚类评估中。标准化互信息NMI计算步骤Python 实现代码:''' 利用Python实现NMI计算'''
import math
import numpy as np
from sklearn import metrics
def NMI(A,B):
# 样本点数
total = len(A
转载
2023-07-06 10:25:58
552阅读
扣丁学堂Python开发socket实现简单通信功能实例2018-08-21 14:12:38747浏览今天扣丁学堂Python培训老师给大家结合实例介绍一下关于socket实现的简单通信功能,首先套接字(socket)是计算机网络数据结构,在任何类型的通信开始之前,网络应用程序必须创建套接字,可以将其比作电话的插孔,没有它将无法进行通信,下面我们一起来看下一下是如何实现的。常用的地址家族AF_U
转载
2023-12-18 13:12:09
43阅读
简单介绍: 基于互信息的图像配准算法以其较高的配准精度和广泛的适用性而成为图像配准领域研究的热点之中的一个。而基于互信息的医学图像配准方法被觉得是最好的配准方法之中的一个。基于此。本文将介绍简单的基于互信息的图像配准算法。预备知识熵 熵(entropy)是信息论中的重要概念,用来描写叙述系统
转载
2023-10-30 14:46:53
234阅读
互信息的原理、计算和应用Mutual Information 互信息Background熵 Entropy交叉熵 Cross Entropy条件熵 Conditional EntropyKL-散度 KL-divergence定义计算方法Variational approach^[3]^Mutual Information Neural Estimation, MINE^[5]^DEEP INFO
转载
2023-12-22 21:10:02
366阅读
最大互信息系数法(Maximum Mutual Information Coefficient, MMIC)是一种常用的特征选择方法,尤其在处理高维数据时,它能有效地识别与目标变量相关的重要特征。本文将通过详细的解析和实际的代码实现,阐述如何使用 Python 实现最大互信息系数法。
```mermaid
flowchart TD
A[开始] --> B{输入数据}
B -->
一、算法思想1、特征选择特征选择是去除无关紧要或庸余的特征,仍然还保留其他原始特征,从而获得特征子集,从而以最小的性能损失更好地描述给出的问题。特征选择方法可以分为三个系列:过滤式选择、包裹式选择和嵌入式选择的方法 。本文介绍的互信息(mutual information)即为过滤式的特征选择算法。关于过滤式的特征算法系列,可参考我的其他文章。特征选择之卡方检验特征选择之Fisher Score2
转载
2023-08-27 16:15:57
1039阅读
和分解的边缘分布的乘积的相似程度。互信息(Mutual Information)是度量两个事件集合之间的相关性(mutual dependence)。互信息最常用的单位是bit。1 互信息定义1.1 原始定义和,其联合概率分布函数为,而边缘概率分布函数分别为和,其互信息可以定义为: 在连续随机变量的情形
转载
2023-12-11 07:57:19
274阅读
# 如何用 Python 计算互信息值
互信息(Mutual Information)是一个用于衡量两个随机变量之间相互依赖程度的关键概念。在机器学习和信息论中,互信息值既可以用于特征选择,也可以用于评估模型的有效性。本文将帮助你逐步实现互信息值的计算过程。
## 1. 整体流程
下面是实现互信息值的步骤表:
| 步骤 | 描述 |
# 使用Python实现互信息法的指南
互信息法(Mutual Information)是一种用于衡量随机变量之间相互依赖程度的统计量。这在机器学习和特征选择中相当重要。本文将指导你如何在Python中实现互信息法。
## 流程概述
下面是实现互信息法的基本步骤:
| 步骤 | 描述 |
|--------|--------------
原创
2024-09-29 05:03:49
79阅读
1、基本定义最近看西瓜书,看到第四章决策树,在对样本的属性进行划分选择的时候用到了信息增益,其中包含了 信息熵(information entropy) 和 信息增益(information gain) 两个概念,由于没学过信息论这门课,然后在知乎上看到的DerisWeng博士的一个扫盲视频还有哈工大博士在知乎上的答贴,讲的挺好,结合自己的理解阐述一下。信息熵当某种事情有多种微观态的条件下,这件事