一般一维数组,我们称之为向量(vector),二维数组,我们称之为矩阵(matrix);三维数组以及多位数组,我们称之为张量(tensor)。    在介绍张量分解前,我们先看看矩阵分解相关知识概念。 一、基本概念矩阵补全(Matrix Completion)目的是为了估计矩阵中缺失的部分(不可观察的部分),可以看做是用矩阵X近似矩阵M,然后用X中的元素作为矩阵M中不
转载 2024-01-23 17:02:49
358阅读
与矩阵分解一样,我们希望通过张量分解去提取原数据中所隐藏的信息或主要成分。当前主流的张量分解方法有CP分解,Tucker分解,t-SVD分解等,更新的方法大多是在他们的基础上做进一步的改进或引用。因此,张量分解也是张量算法的基础。下面分别做介绍。目录一、CP分解二、Tucker分解三、t-SVD分解四、张量分解五、张量分解一、CP分解CP分解是将任意高阶张量分解成多个秩为1的“因子张量”之和。
# 深入理解PyTorch中的张量分解 张量分解是一种强大的工具,可以用于处理多维数组(张量)的数据。它在深度学习、推荐系统、图像处理等多个领域得到了广泛应用。PyTorch作为一种灵活且高性能的深度学习框架,提供了丰富的工具来实现张量分解。本文将深入探讨张量分解的基本概念、其在PyTorch中的实现以及应用示例。 ## 什么是张量分解张量分解是将一个多维数组(即张量)表示为更小的、低维
原创 9月前
320阅读
快速入门pytorch基础结构——张量     1. 张量¶  1.1. 概述¶  张量(tensor)是pytorch中的一种较为基础的数据结构,类比于numpy中的ndarrays,在pytorch中,张量可以在GPU中进行运算 通过以下命令,我们导入pytorch和numpy:I
转载 2023-07-06 21:21:34
130阅读
一、张量的定义和变换 1.张量表示一个数值组成的数组,这个数组可能有多个维度。 说明,torch.arange(12)可以得到一个一维的(有几层中括号就是几维数组,注意是层,不是个数),一个最内层的一个中括号中的一列数值都来描述一个点的信息)、由0~11数值组成的张量。 2.可以通过张量的shape属性来访问张量的形状. 说明:输出结果的torch.Size()表示一维里有12个元素。 3.可以通
陈天奇:内存张量结构DLPack的PythonAPI来了新智元2021-02-28 14:25:22【新智元导读】DLPack是一种开放的内存张量结构,用于在框架之间共享张量,近日,开发者陈天奇更新社交媒体详细介绍了为DLPack添加PythonAPI、语义和实现细节的内容。大家知道DLPack吗:深度学习从业人员或多或少都会有了解,诸如 Tensorflow、PyTorch 等深度学习框架,确实
文章目录1. 简介2. 张量初始化2.1. 直接从数据中创建2.2. 从NumPy的array创建2.3. 从另一个张量创建2.4. 用随机或常量值初始化3. 张量属性4. 张量运算4.1. 索引切片4.2. 张量连接4.3. 张量乘法4.3.1. 矩阵数乘4.3.2. 哈达马积4.3.3. 矩阵乘法5. In-place6. 与NumPy桥接6.1. Tensor转NumPy array6.2
基于三向张量分解(factorization of a three-way tensor)的关系学习方法我们的方法与其他张量方法不同,我们的方法能够可以通过模型的潜在组件进行集体学习并提供一种计算分解的有效的算法。我们证实我们关于模型集体学习能力的理论考虑通过在新数据集和实体解析中常用的数据集上进行实验的方法。relational learningcollective learningentity
转载 2023-08-15 12:45:23
72阅读
# 实现 Python 张量分解的指南 张量分解是数据分析和机器学习中一个重要的概念,尤其是在处理高维数据时。在本篇文章中,我们将深入探讨如何在 Python 中实现张量分解,特别是使用 NumPy 和 TensorFlow 等库。 ## 工作流程概览 首先,让我们简要了解完成张量分解的步骤。以下是整个流程的概述: | 步骤 | 描述 | |------|------| | 1. 数据准备
原创 2024-09-08 05:54:03
160阅读
2021SC@SDUSC源代码下载地址:https://gitee.com/zeusees/HyperLPR源码配置的详情见第一篇分析 本篇内容将总结队友所分析的recognizer.py以及SimpleRecognizePlate()函数:一、对recognizer.py的部分代码进行分析:Keras是由纯python编写的基于theano/tensorflow的深度学习框架。Kera
如何用张量分解加速深层神经网络?(附代码) 源地址为:https://www.leiphone.com/news/201802/tSRogb7n8SFAQ6Yj.html 原英文博客标题Accelerating deep neural networks with tensor ecompositions,作者为Jacob。背景在这篇文章中,我将介绍几种低秩张量分解方法,用于在现有的深度学习模型中进
5. Tensor 分解张量的最大特征之一是可以被紧密地表示为分解形式,并且我们有强大的保证方法来得到这些分解。在本教程中,我们将学习这些分解形式以及如何进行张量分解。关于张量分解的更多信息,请参考1。5.1. Tensor 的 Kruskal 形式其思想是将张量表示为一阶张量的和, 也就是向量的外积的和。这种表示可以通过应用典型的Canonical Polyadic 分解(也称为CANDECOM
张量什么是张量?一个数,一个数组,一个矩阵都是张量张量包含多个属性,下面我将进行介绍。 张量的维度,叫做轴(axis)。维度可以无限扩充。查看张量维度:>>> x.ndim标量(0D张量)对应的是数值,例如1,2,3等。向量(1D张量)我们传统理解上的向量是(0,1)、(256,256)等,但这里向量相当于所谓一维数组。>>> x = np.arra
转载 2023-08-14 11:30:59
91阅读
张量对象张量(Tensor)是一种特殊结构,出于并行计算的需要设计,可在GPU等硬件加速器上运行。类似于数组和矩阵,用于对模型的输入输出,模型参数进行编码。 Pytorch中的Tensor类似于Numpy中的ndarray,二者可相互转换,且共享底层内存,可理解为同一数据引用的不同表现形式。修改其中之一会同时修改另一方。张量初始化可由现有数据对象创建张量,或根据维度创建:data = [[1, 2
转载 2023-08-21 09:16:40
162阅读
前言PyTorch 于 2016 年首次推出。在 PyTorch 之前,深度学习框架通常专注于速度或可用性,但不能同时关注两者。PyTorch将这两者相结合,提供了一种命令式和 Python编程风格,支持将代码作为模型,使调试变得容易,支持 GPU 等硬件加速器。PyTorch 是一个 Python 库,它通过自动微分和 GPU 加速执行动态张量计算。它的大部分核心都是用 C++ 编写的,这也是
转载 2023-09-27 22:27:49
298阅读
Pytorch 零基础学习系列 之 创建张量在深度学习中,神经网路结构是基础;在Pytorch中,张量是构建神经网络的基础 。从本质上讲,Pytorch就是一个处理张量的库。一个张量可以是一个数字、向量、矩阵或者任何n维数组。比较重要的一点是张量可以在GPU上进行计算。例如,下图分别展示了1维张量,2维张量和3维张量:如何创建一般张量?方法一(1) 导入 pytorch 和 numpyimport
Pytorch简介Pytorch是一个基于Python的深度学习框架,可以代替Numpy在GPU上进行科学计算。什么是TensorTensor即张量,类似于Numpy的ndarrays,tensor可以在GPU上使用以加速计算。Pytorch创建张量的常用方法创建一个未初始化的张量,其值不确定:# 初始化值不确定,由所分配内存的当前值决定 x = torch.empty(5, 3) print(x
PyTorch框架学习(二) — 张量操作与线性回归1 张量的操作1.1 拼接1.2 切分1.3 索引1.4 变换2 张量的数学运算2.1 加法运算2.2 减法运算2.3 哈达玛积运算(element wise,对应元素相乘)2.4 除法运算2.5 特殊运算 torch.addcdiv2.6 特殊运算 torch.addcmul2.7 幂函数2.7 指数函数2.8 对数函数2.9 三角函数2.1
转载 2023-09-14 22:03:42
157阅读
一、张量tensor张量的三个特征:秩、轴、形状张量的秩是指索引的个数,轴是指每一个维度的最大的索引的值,张量的形状提供了维度和索引的数量关系。经常需要对张量进行重塑t.reshape(1,9)利用上述函数可以将张量按任意想要的形状进行重塑下面我们考虑具体的情况,将张量带入CNN的输入中这里的张量的秩为4,即[B,C,H,W],其中后两个维度作为每一个像素的长和宽的索引,第三个维度作为RBG或者灰
张量操作一、张量的拼接与切分1.1 torch.cat()功能:将张量按维度dim进行拼接tensors:张量序列dim:要拼接的维度1.2 torch.stack()功能:在新创建的维度的上进行拼接tensors:张量序列dim:要拼接的维度(如果dim为新的维度,则新增一个维度进行拼接,新维度只能高一维)           &nbs
转载 2023-07-28 19:31:33
205阅读
  • 1
  • 2
  • 3
  • 4
  • 5