如上图b所示,该论文提出一种利用画布的方式将空间信息考虑在内的图像检索方式。这种检索方式属于多模态的图像检索,即在检索中,queries和database属于不同的模态。在此前的图像检索领域中,大多是对语义相近或者视觉内容相近的图像进行检索,相应的特征也往往是为了图像的语义或者视觉内容而提取的。但是为了实现空间语义特征的图像检索,仅仅只有语义特征或者视觉特征是不可能实现的,因此需要一种特殊的查询方
前面讲到一些文本基本处理方法。一个文本串,对其进行分词和重要性打分后(当然还有更多的文本处理任务),就可以开始更高层的语义分析任务。2.1 Topic Model首先介绍主题模型。说到主题模型,第一时间会想到pLSA,NMF,LDA。关于这几个目前业界最常用的主题模型,已经有相当多的介绍了,譬如文献[60,64]。在这里,主要想聊一下主题模型的应用以及最新进展(考虑到LDA是pLSA的genera
概括积累了一两周,好久没做笔记了,今天,我将展示在之前两周的实战经验:如何使用 Python 和自然语言处理构建知识图谱。网络是一种数学结构,用于表示点之间的关系,可通过无向/有向结构进行可视化展示。它是一种将相关节点映射的数据库形式。知识库是来自不同来源信息的集中存储库,如维基百科、百度百科等。知识图谱是一种采用图形数据模型的知识库。简单来说,它是一种特殊类型的网络,用于展示现实世界实体、
文章目录搭建过程1. 引入必需的库2. 引入数据集3. 搭建神经网络层4. 编译神经网络模型5. 训练模型效果测试 大概几个月前,神经网络、人工智能等概念在我心里仍高不可攀,直到自己亲身上手之后,才发现搭建神经网络并不像自己想象的那么难。很幸运,我开始学习神经网络的时候 Tensorflow2.0已经发布了。 Tensorflow2中内置了Keras库,Keras是一个由Python编写的开源
语义网络以个体为中心的组织知识的语义联系实例联系泛化联系聚集联系属性联系以谓词或关系为中心组织知识的语义联系以关系(谓词)为中心组织知识的语义联系连接词在语义网络中的表示方法合取析取否定蕴含变元和量词在语义网络中的表示方法 以个体为中心的组织知识的语义联系实例联系泛化联系聚集联系属性联系以谓词或关系为中心组织知识的语义联系以关系(谓词)为中心组织知识的语义联系连接词在语义网络中的表示方法合取析取
转载 2024-08-25 23:31:36
169阅读
目录深度学习难点PaddleHub全景PaddleHub体验1、情感分析2、口罩检测大作业 深度学习难点计算机视觉领域:物体的尺寸变化范围大、摆放物体角度、姿态不定,而且可以出现在图片的任何地方,物体也可以是多个类别。自然语言处理领域:语义推理、语义关联(文字的顺序会有不同的语义)、语义表示(分词歧义、一词多义)实现层面:大数据(小样本局限)、大模型(模型越复杂,门槛越高)、大算力(硬件资源要求
转载 2024-03-14 07:16:29
132阅读
Ontology中文将Ontology翻译成本体,我觉得这个翻译应用于哲学还行,应用于信息科学,简直是误导众生。翻译成知识图谱或语义网络更为贴切。当然知识图谱有自己的专有英文Knowledge Graph。本文就叫语义网络吧。我们目前的万维网,是非结构化的,计算机无法自动的将万维网中的文本内容所隐含的信息组织起来,并基于这些信息做出一些推理语义网络包含了实体、命名、分类、属性、关系、继承等概念。通
基于转移的语义依存分析 PS:用过论文成果到垂直领域,效果还不错!论文作者:王宇轩,车万翔,郭江,刘挺引言本文介绍的工作来源于我实验室录用于AAAI2018的论文《A Neural Transition-Based Approach for Semantic Dependency Graph Parsing》。语义依存是近年来提出的对树结构句法或语义表示的扩展,它与树结构的主要区别是允许一些
转载 2023-11-05 15:26:28
184阅读
一、文本语义识别,并进行图谱化表示:1.统计词频文本预处理:对文本进行分句、分词,统计词频2.textrank(1).TextRank算法是由PageRank算法改进而来的,二者的思想有相同之处,区别在于:PageRank算法根据网页之间的链接关系构造网络,而TextRank算法根据词之间的共现关系构造网络;PageRank算法构造的网络中的边是有向无权边,而TextRank算法构造的网络中的边是
《精通Python自然语言处理》Deepti Chopra(印度) 王威 译第六章 语义分析:意义很重要语义分析(意义生成)被定义为确定字符或单次序列意义的过程,可用于执行语义消歧任务。6.1语义分析简介名词解释:语义解释:将意义分配给句子上下文解释:将逻辑形式分配给知识表示语义分析的原语或基本单位:意义或语义(meaning或sense)语义分析用到的Python库:Python库说明TextB
什么是语义分割? 语义分割就是从像素水平上理解、识别图片的内容。输入的是图片,输出的是同尺寸的分割标记,每个像素会被标识为一个类别。 语义分割的用处: ·机器人视觉和场景理解 ·辅助/自动驾驶 ·医学X光一、简介FCN是深度学习用于语义分割任务的开山之作,提出了“全卷积神经网络”,将全连接层替换为卷积层的end-to-end的全卷积网络,可以适应任意尺寸的输入,在不破坏空间结构的基础上,可以对图像
一.产品概述文智中文语义开放平台是基于并行计算系统和分布式爬虫平台,结合独特的语义分析技术,一站式满足用户NLP、转码、抽取、全网数据抓取等中文语义分析需求的开放平台。用户能够基于平台对外提供的OpenAPI实现搜索、推荐、舆情、挖掘等语义分析应用腾讯云文智中文语义平台以SDK模块方式提供服务,支持多种编程语言二.产品功能1.分词/命名实体识别API,提供智能分词(基本词+短语)、词性标注、命名实
1.什么是语义化标签语义化标签就是具有语义的标签,它可以清晰地向我们展示它的作用和用途。例如h系列标签,可以将文字加粗放大。<strong>标签可用于区别其他文字,起到强调作用。2.语义化标签的好处语义化标签具有可读性,使得文档结构清晰浏览器便于读取,有利于SEO优化展现在页面中时,用户体验好便于团队开发和维护3.语义化标签有哪些h系列标签--标题p标签--段落标签格式化文本标签:加粗
转载 2023-11-02 13:11:11
34阅读
文章目录1.引言2.DeepLab1&22.1 DeepLabv1详解2.2 DeepLabv2详解3.DeepLab33.1 网络结构3.2 实验结果4.DeepLab3+4.1 网络结构4.2 实验结果:5. AutoDeepLab5.1 架构搜索空间5.2 方法5.3 优化5.4 实验结果 1.引言在语义分割领域,DeepLab系列算法占据了半壁江山,而DeepLabv3+是常被提
目录 一、图像分割二、前期准备三、语义分割四、实例分割一、图像分割图像分割就是在像素级上,对图像进行分类的任务。图像分割主要分为以下几类:语义分割:就是把图像中每个像素赋予一个类别标签,用不同的颜色来表示。实例分割:它不需要对每个像素进行标记,它只需要找到感兴趣物体的边缘轮廓就行。不关注背景,同种类之间也会用不同颜色进行标注。全景分割:语义分割和实例分割的结合。关注背景和实例二、前期准备
在cv领域,会经常见到“语义分割”、“实例分割”这两个名词,本文就来解释下他们分别是什么意思,又有什么区别。目录语义分割和实例分割语义分割实例分割总结语义分割和实例分割在开始这篇文章之前,我们得首先弄明白,什么是图像分割?我们知道一个图像只不过是许多像素的集合。图像分割分类是对图像中属于特定类别的像素进行分类的过程,属于pixel-wise即像素级别的下游任务。因此图像分割简单来说就是按像素进行分
LTP提供了一系列中文自然语言处理工具,用户可以使用这些工具对于中文文本进行分词、词性标注、句法分析等等工作。ltp的官方文档里演示了分词,句法分析,语义依存关系提取等简单demo。本文在此基础上,将提取出的语义依存关系构建出知识图谱,使用的是neo4j平台。同时本文也会演示怎么使用python在neo4j上创建图谱。neo4j的安装比较简单,请自行查阅。用ltp创建知识图谱至少需要3个信息:节点
本课程B站链接:https://www.bilibili.com/video/BV1Vq4y127fB/ 主要介绍unet的网络结构。详见2015年的论文unet结构图【详解】典型的encoder-decoder结构左边是encoder,也就是提取特征和下采样的部分;右边decoder解码是一系列上采样,得到最终的一个分割图中每个长条的矩形对应的都是一个特征层,箭头都是一种操作从输入开始看,输入
转载 2024-03-11 20:01:20
259阅读
参考知乎教程:知识图谱–给AI装个大脑本文的一切环境配置都是在Windows10平台 机器学习是学习能力强的小孩。 知识图谱是经验丰富的老人。一、知识图谱概念 1.语义网络(Semantic Network) 与语义网不是同一概念,需要注意。 语义网络由相互连接的节点和边组成,节点表示概念或者对象,边表示他们之间的关系。 在表现形式上,语义网络和知识图谱相似,但语义网络更侧重于描述概念与概念之间的
ucinet介绍UCINET为菜单驱动的Windows程序,可能是最知名和最经常被使用的处理社会网络数据和其他相似性数据的综合性分析程序。与UCINET捆绑在一起的还有Pajek、Mage和NetDraw等三个软件。UCINET能够处理的原始数据为矩阵格式,提供了大量数据管理和转化工具。该程序本身不包含 网络可视化的图形程序,但可将数据和处理结果输出至NetDraw、Pajek、Mage和Krac
  • 1
  • 2
  • 3
  • 4
  • 5